DOI Prefix : 10.9780 | Journal DOI : 10.9780/22307850
Scroll to Top

Volume : IV, Issue : XI, December - 2014

ALUMINIUM PHYTOREMIDIATION POTENTIAL OF PEDILANTHUS VARIETIES

K. Sujatha, Santosh Kumar Mehar

DOI : 10.9780/22307850, By : Laxmi Book Publication

Abstract :

Al toxicity is an important limitation to worldwide crop production, which is more prevalent in acidic soils. Since % of the world’s potentially arable lands are acidic, the problem needs more attention. Therefore the present study was undertaken to evaluate the Al remediating potential of Pedilanthus varieties.

Keywords :


Article :


Cite This Article :

K. Sujatha, Santosh Kumar Mehar(2014). ALUMINIUM PHYTOREMIDIATION POTENTIAL OF PEDILANTHUS VARIETIES. Indian Streams Research Journal, Vol. IV, Issue. XI, DOI : 10.9780/22307850, http://isrj.org/UploadedData/5962.pdf

References :

  1. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  2. Physiol. 96, 737–743.
  3. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  4. 1019–1025.
  5. of malic acid from root apices. Plant Physiol 103, 695–702.
  6. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  7. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  8. 1019–1025.
  9. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  10. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  11. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  12. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  13. of malic acid from root apices. Plant Physiol 103, 695–702.
  14. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  15. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  16. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  17. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  18. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  19. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  20. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  21. 147.
  22. 1019–1025.
  23. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  24. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  25. Planta 196, 788–795.
  26. (Glycine max). Physiol Plant. 110, 72–74.
  27. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  28. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  29. 109-120.
  30. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  31. Plant Biochem Physiol 10: 57-93.
  32. 1019–1025.
  33. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  34. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  35. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  36. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  37. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  38. Physiol. 96, 737–743.
  39. 109-120.
  40. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  41. Plant Biochem Physiol 10: 57-93.
  42. 1019–1025.
  43. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  44. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  45. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  46. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  47. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  48. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  49. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  50. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  51. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  52. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  53. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  54. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  55. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  56. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  57. Planta 196, 788–795.
  58. (Glycine max). Physiol Plant. 110, 72–74.
  59. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  60. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  61. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  62. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  63. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  64. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  65. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  66. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  67. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  68. Planta 196, 788–795.
  69. (Glycine max). Physiol Plant. 110, 72–74.
  70. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  71. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  72. of malic acid from root apices. Plant Physiol 103, 695–702.
  73. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  74. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  75. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  76. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  77. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  78. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  79. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  80. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  81. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  82. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  83. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  84. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  85. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  86. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  87. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  88. Physiol. 96, 737–743.
  89. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  90. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  91. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  92. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  93. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  94. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  95. of malic acid from root apices. Plant Physiol 103, 695–702.
  96. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  97. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  98. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  99. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  100. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  101. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  102. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  103. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  104. 1019–1025.
  105. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  106. 1019–1025.
  107. of malic acid from root apices. Plant Physiol 103, 695–702.
  108. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  109. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  110. of malic acid from root apices. Plant Physiol 103, 695–702.
  111. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  112. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  113. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  114. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  115. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  116. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  117. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  118. 1019–1025.
  119. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  120. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  121. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  122. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  123. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  124. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  125. 109-120.
  126. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  127. Plant Biochem Physiol 10: 57-93.
  128. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  129. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  130. 109-120.
  131. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  132. Plant Biochem Physiol 10: 57-93.
  133. 1019–1025.
  134. of malic acid from root apices. Plant Physiol 103, 695–702.
  135. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  136. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  137. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  138. Planta 196, 788–795.
  139. (Glycine max). Physiol Plant. 110, 72–74.
  140. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  141. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  142. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  143. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  144. 1019–1025.
  145. 109-120.
  146. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  147. Plant Biochem Physiol 10: 57-93.
  148. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  149. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  150. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  151. Physiol. 96, 737–743.
  152. role of organic acids. Trends in plant science, Vol.6 No.6.
  153. 109-120.
  154. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  155. Plant Biochem Physiol 10: 57-93.
  156. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  157. Planta 196, 788–795.
  158. (Glycine max). Physiol Plant. 110, 72–74.
  159. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  160. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  161. 1019–1025.
  162. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  163. 147.
  164. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  165. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  166. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  167. Physiol. 96, 737–743.
  168. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  169. 147.
  170. 1019–1025.
  171. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  172. role of organic acids. Trends in plant science, Vol.6 No.6.
  173. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  174. Physiol. 96, 737–743.
  175. 1019–1025.
  176. 1019–1025.
  177. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  178. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  179. 147.
  180. 1019–1025.
  181. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  182. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  183. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  184. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  185. 147.
  186. of malic acid from root apices. Plant Physiol 103, 695–702.
  187. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  188. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  189. 147.
  190. 1019–1025.
  191. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  192. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  193. 1019–1025.
  194. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  195. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  196. 1019–1025.
  197. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  198. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  199. Planta 196, 788–795.
  200. (Glycine max). Physiol Plant. 110, 72–74.
  201. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  202. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  203. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  204. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  205. Physiol. 96, 737–743.
  206. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  207. Physiol. 96, 737–743.
  208. of malic acid from root apices. Plant Physiol 103, 695–702.
  209. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  210. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  211. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  212. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  213. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  214. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  215. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  216. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  217. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  218. 1019–1025.
  219. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  220. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  221. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  222. 147.
  223. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  224. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  225. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  226. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  227. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  228. of malic acid from root apices. Plant Physiol 103, 695–702.
  229. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  230. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  231. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  232. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  233. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  234. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  235. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  236. of malic acid from root apices. Plant Physiol 103, 695–702.
  237. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  238. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  239. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  240. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  241. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  242. 1019–1025.
  243. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  244. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  245. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  246. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  247. role of organic acids. Trends in plant science, Vol.6 No.6.
  248. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  249. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  250. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  251. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  252. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  253. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  254. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  255. 1019–1025.
  256. role of organic acids. Trends in plant science, Vol.6 No.6.
  257. role of organic acids. Trends in plant science, Vol.6 No.6.
  258. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  259. Physiol. 96, 737–743.
  260. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  261. 1019–1025.
  262. of malic acid from root apices. Plant Physiol 103, 695–702.
  263. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  264. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  265. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  266. of malic acid from root apices. Plant Physiol 103, 695–702.
  267. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  268. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  269. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  270. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  271. 109-120.
  272. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  273. Plant Biochem Physiol 10: 57-93.
  274. of malic acid from root apices. Plant Physiol 103, 695–702.
  275. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  276. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  277. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  278. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  279. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  280. 147.
  281. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  282. 109-120.
  283. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  284. Plant Biochem Physiol 10: 57-93.
  285. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  286. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  287. Planta 196, 788–795.
  288. (Glycine max). Physiol Plant. 110, 72–74.
  289. of malic acid from root apices. Plant Physiol 103, 695–702.
  290. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  291. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  292. 147.
  293. 147.
  294. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  295. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  296. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  297. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  298. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  299. 109-120.
  300. 147.
  301. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  302. Physiol. 96, 737–743.
  303. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  304. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  305. Physiol. 96, 737–743.
  306. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  307. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  308. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  309. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  310. 1019–1025.
  311. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  312. Plant Biochem Physiol 10: 57-93.
  313. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  314. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  315. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  316. 1019–1025.
  317. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  318. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  319. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  320. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  321. Planta 196, 788–795.
  322. (Glycine max). Physiol Plant. 110, 72–74.
  323. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  324. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  325. Physiol. 96, 737–743.
  326. 1019–1025.
  327. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  328. Planta 196, 788–795.
  329. (Glycine max). Physiol Plant. 110, 72–74.
  330. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  331. Plant Biochem Physiol 10: 57-93.
  332. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  333. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  334. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  335. 1019–1025.
  336. 109-120.
  337. role of organic acids. Trends in plant science, Vol.6 No.6.
  338. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  339. Physiol. 96, 737–743.
  340. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  341. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  342. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  343. 1019–1025.
  344. 147.
  345. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  346. 147.
  347. 1019–1025.
  348. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  349. Planta 196, 788–795.
  350. (Glycine max). Physiol Plant. 110, 72–74.
  351. 147.
  352. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  353. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  354. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  355. Planta 196, 788–795.
  356. (Glycine max). Physiol Plant. 110, 72–74.
  357. 109-120.
  358. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  359. Plant Biochem Physiol 10: 57-93.
  360. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  361. Planta 196, 788–795.
  362. (Glycine max). Physiol Plant. 110, 72–74.
  363. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  364. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  365. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  366. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  367. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  368. Physiol. 96, 737–743.
  369. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  370. 1019–1025.
  371. 147.
  372. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  373. 1019–1025.
  374. 1019–1025.
  375. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  376. Planta 196, 788–795.
  377. (Glycine max). Physiol Plant. 110, 72–74.
  378. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  379. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  380. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  381. 1019–1025.
  382. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  383. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  384. of malic acid from root apices. Plant Physiol 103, 695–702.
  385. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  386. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  387. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  388. Physiol. 96, 737–743.
  389. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  390. Planta 196, 788–795.
  391. (Glycine max). Physiol Plant. 110, 72–74.
  392. role of organic acids. Trends in plant science, Vol.6 No.6.
  393. role of organic acids. Trends in plant science, Vol.6 No.6.
  394. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  395. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  396. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  397. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  398. 147.
  399. 1019–1025.
  400. role of organic acids. Trends in plant science, Vol.6 No.6.
  401. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  402. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  403. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  404. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  405. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  406. Physiol. 96, 737–743.
  407. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  408. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  409. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  410. Planta 196, 788–795.
  411. (Glycine max). Physiol Plant. 110, 72–74.
  412. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  413. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  414. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  415. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  416. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  417. 1019–1025.
  418. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  419. Planta 196, 788–795.
  420. (Glycine max). Physiol Plant. 110, 72–74.
  421. 147.
  422. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  423. Physiol. 96, 737–743.
  424. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  425. 109-120.
  426. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  427. Plant Biochem Physiol 10: 57-93.
  428. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  429. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  430. 1019–1025.
  431. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  432. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  433. Physiol. 96, 737–743.
  434. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  435. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  436. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  437. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  438. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  439. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  440. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  441. 109-120.
  442. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  443. Plant Biochem Physiol 10: 57-93.
  444. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  445. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  446. Planta 196, 788–795.
  447. (Glycine max). Physiol Plant. 110, 72–74.
  448. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  449. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  450. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  451. 1019–1025.
  452. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  453. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  454. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  455. 1019–1025.
  456. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  457. Planta 196, 788–795.
  458. (Glycine max). Physiol Plant. 110, 72–74.
  459. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  460. Plant Biochem Physiol 10: 57-93.
  461. 1019–1025.
  462. 1019–1025.
  463. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  464. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  465. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  466. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  467. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  468. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  469. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  470. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  471. Physiol. 96, 737–743.
  472. 1019–1025.
  473. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  474. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  475. 1019–1025.
  476. of malic acid from root apices. Plant Physiol 103, 695–702.
  477. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  478. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  479. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  480. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  481. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  482. 109-120.
  483. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  484. Plant Biochem Physiol 10: 57-93.
  485. of malic acid from root apices. Plant Physiol 103, 695–702.
  486. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  487. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  488. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  489. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  490. Physiol. 96, 737–743.
  491. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  492. 109-120.
  493. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  494. Plant Biochem Physiol 10: 57-93.
  495. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  496. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  497. of malic acid from root apices. Plant Physiol 103, 695–702.
  498. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  499. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  500. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  501. Physiol. 96, 737–743.
  502. 147.
  503. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  504. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  505. Planta 196, 788–795.
  506. (Glycine max). Physiol Plant. 110, 72–74.
  507. 1019–1025.
  508. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  509. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  510. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  511. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  512. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  513. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  514. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  515. Planta 196, 788–795.
  516. (Glycine max). Physiol Plant. 110, 72–74.
  517. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  518. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  519. Planta 196, 788–795.
  520. (Glycine max). Physiol Plant. 110, 72–74.
  521. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  522. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  523. 147.
  524. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  525. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  526. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  527. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  528. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  529. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  530. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  531. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  532. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  533. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  534. of malic acid from root apices. Plant Physiol 103, 695–702.
  535. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  536. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  537. 109-120.
  538. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  539. Plant Biochem Physiol 10: 57-93.
  540. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  541. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  542. 1019–1025.
  543. 1019–1025.
  544. 109-120.
  545. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  546. Plant Biochem Physiol 10: 57-93.
  547. 109-120.
  548. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  549. Plant Biochem Physiol 10: 57-93.
  550. of malic acid from root apices. Plant Physiol 103, 695–702.
  551. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  552. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  553. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  554. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  555. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  556. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  557. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  558. 1019–1025.
  559. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  560. role of organic acids. Trends in plant science, Vol.6 No.6.
  561. of malic acid from root apices. Plant Physiol 103, 695–702.
  562. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  563. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  564. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  565. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  566. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  567. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  568. role of organic acids. Trends in plant science, Vol.6 No.6.
  569. role of organic acids. Trends in plant science, Vol.6 No.6.
  570. 1019–1025.
  571. 109-120.
  572. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  573. Plant Biochem Physiol 10: 57-93.
  574. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  575. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  576. 1019–1025.
  577. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  578. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  579. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  580. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  581. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  582. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  583. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  584. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  585. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  586. 109-120.
  587. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  588. Plant Biochem Physiol 10: 57-93.
  589. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  590. 1019–1025.
  591. 1019–1025.
  592. 109-120.
  593. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  594. Plant Biochem Physiol 10: 57-93.
  595. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  596. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  597. role of organic acids. Trends in plant science, Vol.6 No.6.
  598. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  599. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  600. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  601. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  602. Physiol. 96, 737–743.
  603. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  604. 1019–1025.
  605. 1019–1025.
  606. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  607. Planta 196, 788–795.
  608. (Glycine max). Physiol Plant. 110, 72–74.
  609. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  610. Physiol. 96, 737–743.
  611. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  612. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  613. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  614. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  615. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  616. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  617. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  618. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  619. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  620. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  621. Physiol. 96, 737–743.
  622. 147.
  623. 1019–1025.
  624. 1019–1025.
  625. role of organic acids. Trends in plant science, Vol.6 No.6.
  626. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  627. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  628. 147.
  629. 1019–1025.
  630. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  631. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  632. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  633. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  634. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  635. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  636. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  637. 147.
  638. 1019–1025.
  639. 109-120.
  640. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  641. Plant Biochem Physiol 10: 57-93.
  642. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  643. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  644. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  645. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  646. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  647. Physiol. 96, 737–743.
  648. 1019–1025.
  649. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  650. Planta 196, 788–795.
  651. (Glycine max). Physiol Plant. 110, 72–74.
  652. 109-120.
  653. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  654. Plant Biochem Physiol 10: 57-93.
  655. 1019–1025.
  656. 109-120.
  657. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  658. Plant Biochem Physiol 10: 57-93.
  659. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  660. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  661. role of organic acids. Trends in plant science, Vol.6 No.6.
  662. 1019–1025.
  663. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  664. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  665. Planta 196, 788–795.
  666. (Glycine max). Physiol Plant. 110, 72–74.
  667. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  668. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  669. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  670. role of organic acids. Trends in plant science, Vol.6 No.6.
  671. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  672. early seedling establishment, growth and respiration of white spruce (Picea glauca). Can. J. Bot. 66, 2305-2310.
  673. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  674. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  675. 109-120.
  676. Miyasaka, S.C. et al. (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant
  677. Plant Biochem Physiol 10: 57-93.
  678. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  679. role of organic acids. Trends in plant science, Vol.6 No.6.
  680. of malic acid from root apices. Plant Physiol 103, 695–702.
  681. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  682. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  683. role of organic acids. Trends in plant science, Vol.6 No.6.
  684. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  685. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  686. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  687. 147.
  688. 109-120.
  689. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  690. of malic acid from root apices. Plant Physiol 103, 695–702.
  691. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  692. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  693. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  694. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  695. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  696. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  697. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  698. of malic acid from root apices. Plant Physiol 103, 695–702.
  699. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  700. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  701. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  702. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  703. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  704. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  705. 147.
  706. 147.
  707. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  708. of malic acid from root apices. Plant Physiol 103, 695–702.
  709. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  710. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  711. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  712. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  713. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  714. Physiol. 96, 737–743.
  715. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  716. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  717. 147.
  718. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  719. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  720. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  721. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  722. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  723. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  724. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  725. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  726. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  727. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  728. 147.
  729. role of organic acids. Trends in plant science, Vol.6 No.6.
  730. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  731. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  732. Planta 196, 788–795.
  733. (Glycine max). Physiol Plant. 110, 72–74.
  734. of malic acid from root apices. Plant Physiol 103, 695–702.
  735. Pellet, D.M. et al.(1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
  736. Yang, Z.M. et al. (2001) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean
  737. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  738. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  739. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  740. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  741. Delhaize, E. et al. (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion
  742. aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005.
  743. changes of some dehydrogenases and aminotransferases in yellow lupine. Biol. Bull. Poznan 34, 47-48.
  744. 1019–1025.
  745. Ma, Z. and Miyasaka, S.C. (1998) Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.
  746. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  747. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  748. 147.
  749. capacity of plants: Implication for green belt around thermal power plants. Landscape and Urban Planning 92:136-
  750. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  751. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  752. Planta 196, 788–795.
  753. (Glycine max). Physiol Plant. 110, 72–74.
  754. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  755. Planta 196, 788–795.
  756. (Glycine max). Physiol Plant. 110, 72–74.
  757. L. V. Kochian, M. A. Pi˜neros, andO. A.Hoekenga, “The physiology, genetics and molecular biology of plant
  758. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  759. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  760. role of organic acids. Trends in plant science, Vol.6 No.6.
  761. Taylor GJ, 1991 Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top
  762. Jian Feng Ma, Peter R. Ryan and Emmanuel Delhaize, 2001.Aluminium tolerance in plants and the complexing
  763. Ma, J.F. et al. (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
  764. Mossor-Pietraszewska, T., Kwit, M. & Legiewicz, M. (1997) The influence of aluminium ions on activity
  765. Planta 196, 788–795.
  766. (Glycine max). Physiol Plant. 110, 72–74.
  767. 1019–1025.
  768. Lasat M.M. (2002), Phytoremediation of toxic metals: a review of biological mechanisms. J Environ. Qual. 31,
  769. 1019–1025.
  770. 1019–1025.
  771. H. M. May and D. K. Nordstrom, “Assessing the solubilities and reactions kinetics of aluminuous mineral in
  772. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  773. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and
  774. soils,” in Soil Acidity, B. Ulrich and M. E. Summer, Eds., pp. 125–148, Springer, Berlin, Germany, 1991.
  775. Ma, J.F. et al. (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38,
  776. Jamil, S., Abhilash, P.C., Singh, A., Singh, N. And Behl, H.M., 2009. Fly ash trapping and metal accumulating
  777. Nosko, P., Brassard, P., Kramer, J.R. & Kershaw, K.A. (1988) The effect of aluminum on seed germination and

Article Post Production

    No data exists for the row/column.
Creative Commons License
Indian Streams Research Journal by Laxmi Book Publication is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://oldisrj.lbp.world/Default.aspx.
Permissions beyond the scope of this license may be available at http://oldisrj.lbp.world/Default.aspx
Copyright © 2014 Indian Streams Research Journal. All rights reserved
Looking for information? Browse our FAQs, tour our sitemap, or contact ISRJ
Read our Privacy Policy Statement and Plagairism Policy. Use of this site signifies your agreement to the Terms of Use