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INTRODUCTION:    

 Theoretical bounds of Shannon's capacity can be reached in terms of performance for the case of Turbo 
codes. Iterative procedure, as a part of a Turbo decoder system, offers excellent detection of information 
streams. These streams are transmitted through Gaussian channels. Consequently, the invention of Turbo 
codes is considered to be a major breakthrough [1]. Their applications are numerous and include OFDM 
[2], Wireless LAN, 3rd Generation Partnership Project (3GPP), 3G mobile telephony standards and others. 
Also, Turbo codes have been adopted by European Space Agency and NASA missions such as SMART-1 
and Mars Reconnaissance Orbiter respectively. 
           Turbo codes can be categorized into two schemes. These schemes are SCCC (Serially concatenated 
convolutional codes) and PCCC (Parallel concatenated convolutional codes). The previous topologies can 
be easily discriminated by the strategy of the block connections. These connections refer to the joining of 
convolutional encoders in a serial or in a parallel manner. In each case various interleavers must be present. 
The idea of iterative function is coming from the operation of a car's turbo charger. The fuel is enhanced 
through a feedback connection and the car's performance increases. In accordance to the previous idea, a 
Turbo decoder uses feedback loop in order to reevaluate data and finally to produce a better estimation. This 
estimation of received data is superior compared to other systems which are utilizing Viterbi decoders. The 
iterative function can be constituted of APP (A Posteriori Probability) decoders with two inputs and two 
outputs. These decoders provide a very efficient estimation of the value of the incoming information but 
they cannot conclude to a decision which bits are 1's or 0's. This decision is taken by the Hard Decision 
section. Also, two of the previous decoders can constitute a typical iterative decoding system. This system 
can be considered as a block with two inputs and two outputs.
           The two inputs correspond to the incoming streams from the iterative connection and from the 
primary receiving route. The two outputs produce the data for reevaluation (for feedback loop) and the 
speculated sequences (for Hard Decision). A similar idea to the previous strategy of encoding and decoding 
has been adopted in order to design a new PCCC system. The main differences to standard architectures 
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include three convolutional encoders in the encoder's section, along with the appropriate number of 
interleavers. In the decoder's section, the incoming data stream is demultiplexed and then each produced 
data stream is fed to the appropriate APP decoders. These decoders are three instead of two but they still 
form an iterative function for estimating the received data. Moreover, in this estimation is taken into 
consideration the use of an  additional parameter which is a scaling factor.
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1) Principle of the General Soft-Output Viterbi Decoder
         The Viterbi algorithm produces the ML output sequence for convolutional codes. This algorithm 
provides optimal sequence estimation for one stage convolutional codes. For concatenated (multistage) 
convolutional codes, there are two main drawbacks to conventional Viterbi decoders. First, the inner 
Viterbi decoder produces bursts of bit errors which degrades the performance of the outer Viterbi decoders 
[4]. Second, the inner Viterbi decoder produces hard decision outputs which prohibits the outer Viterbi 
decoders from deriving the benefits of soft decisions [4]. Both of these drawbacks can be reduced and the 
performance of the overall concatenated decoder can be significantly improved if the Viterbi decoders are 
able to produce reliability (soft-output) values [5]. The reliability values are passed on to  subsequent 
Viterbi decoders as apriori information to improve decoding performance. This modified Viterbi decoder is 
referred to as the soft-output Viterbi algorithm (SOVA) decoder. Figure 1 shows a concatenated SOVA 
decoder.

Figure 1: A concatenated SOVA decoder where y represents the received channel values, u represents the 
hard decision output values, and L represents the associated reliability values.
       The reliability of the SOVA decoder is calculated from the trellis diagram as shown in Figure 2. 
In Figure 2, a 4-state trellis diagram is shown. The solid line indicates the survivor path (assumed here to be 
part of the final ML path) and the dashed line indicates the competing (concurrent) path at time t for state 1. 
For the sake of brevity, survivor and competing paths for other nodes are not shown. The label S1,t 
represents state 1 and time t. Also, the labels {0,1} shown on each path indicate the estimated binary 
decision for the paths. The survivor path for this node is assigned an accumulated metric Vs(S1,t) and the 
competing path for this node is assigned an accumulated metric Vc(S1,t). The fundamental information for 
assigning a reliability value L(t) to node S1,t's survivor path is the absolute difference between the two 
accumulated metrics, L(t)=| Vs(S1,t) - Vc(S1,t) | [5]. The greater this difference, the more reliable is the 
survivor path. For this

reliability calculation, it is assumed that the survivor accumulated metric is always “better” than 
the competing accumulated metric. Furthermore, to reduce complexity, the reliability values only need to 
be calculated for the ML survivor path (assume it is known for now) and are unnecessary for the other 
survivor paths since they will be discarded later.
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        To illustrate the concept of reliability, two examples are given below. In these examples, the Viterbi 
algorithm selects the survivor path as the path with the smaller accumulated metric. In the first example, 
assume that at node S1,t the accumulated survivor metric Vs(S1,t)=50 and that the accumulated competing 
metric Vc(S1,t)=100. The reliability value associated with the selection of this survivor path is L(t)=|50-
100|=50. In the second example, assume that the accumulated survivor metric does not change, 
Vs(S1,t)=50, and that the accumulated competing metric Vc(S1,t)=75. The resulting reliability value is 
L(t)=|50-75|=25 [6]. Although in both of these examples the survivor path has the same accumulated 
metric, the reliability value associated with the survivor path is different. The reliability value in the first 
example provides more confidence (twice as much confidence) in the selection of the survivor path than the 
value in the second example. Figure 3 illustrates a problem with the use of the absolute difference between 
accumulated survivor and competing metrics as a measure of the reliability of the decision. 
           In Figure 3, the survivor and competing paths at S1,t have diverged at time t-5. The survivor and 
competing paths produce opposite estimated binary decisions at times t, t-2, and t-4 as shown in bold labels. 
For the purpose of illustration, let us suppose that the survivor and competing accumulated metrics at S1,t 
are equal, Vs(S1,t) = Vc(S1,t) = 100. This means that both the survivor and competing paths have the same 
probability of being the ML path.

3

Indian Streams Research Journal  •  Volume 2 Issue  7  •  Aug  2012

 
Figure 2: Example of survivor and competing paths for reliability estimation at time t 

 
Figure 3: Example that shows the weakness of reliability assignment 

using metric values directly 
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Furthermore, let us assume that the survivor accumulated metric is “better” than the competing 
accumulated metric at time t-2 and t-4 as shown in Figure 3. To reduce the figure complexity, these 
competing paths for times t-2 and t-4 are not shown. From this argument, it can be seen that the reliability 
value assigned to the survivor path at time t is L(t)=0, which means that there is no reliability associated 
with the selection of the survivor path. At times t-2 and t-4, the reliability values assigned to the survivor 
path were greater than zero (L(t-2)=25 and L(t-4)=10) as a result of the “better” accumulated metrics from 
the survivor path. However, at time t, the competing path could also have been the survivor path because 
they have the same metric. Thus, there could have been opposite estimated binary decisions at times t, t-2, 
and t-4 without reducing the associated reliability values along the survivor path. To improve the reliability 
values of the survivor path, a trace back operation to update the reliability values has been suggested [4], 
[5]. This updating procedure is integrated into the Viterbi algorithm as follows [4]: 
For node Sk,t in the trellis diagram (corresponding to state k at time t),
1. Store L(t) = | Vs(Sk,t) - Vc(Sk,t) |. (This is also denoted as D in other papers.) If there is more than one 
competing path, then multiple reliability values must be calculated and the smallest reliability value is then 
set to L(t).
2. Initialize the reliability value of Sk,t to +¥ (most reliable).
3. Compare the survivor and competing paths at Sk,t and store the memorization levels (MEMs) where the 
estimated binary decisions of the two paths differ.
4. Update the reliability values at these MEMs with the following procedure:
a. Find the lowest MEM>0, denoted as MEMlow, whose reliability value has not been updated.
b. Update MEMlow's reliability value L(t-MEMlow) by assigning the lowest reliability value between 
MEM = 0 and MEM = MEMlow. Continuing from the example, the opposite bit estimations between the 
survivor and competing bit paths for S1,t are located and stored as MEM={0, 2, 4}. With this MEM 
information, the reliability updating process is accomplished. In Figure 4, the first reliability update is 
shown. 

The lowest MEM>0, whose reliability value has not been updated, is determined to be MEMlow=2. The 
lowest reliability value between MEM=0 and MEM=MEMlow=2 is found to be L(t)=0. Thus, the 
associated reliability value is updated from L(t-2)=25 to L(t-2)=L(t)=0. The next lowest MEM>0, whose 
reliability value has not been updated, is determined to be MEMlow=4. The lowest reliability value 
between MEM=0 and MEM=MEMlow=4 is found to be L(t)=L(t-2)=0. Thus, the associated reliability 
value is updated from L(t-4)=10 to L(t- 4)=L(t)=L(t-2)=0.

2 SOVA IMPLEMENTATION

 The SOVA decoder can be implemented in various ways. The straightforward implementation of the SOVA 
decoder [7] may become computationally intensive for large  constraint length K codes and long frame 
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Figure 4:  Updating process for time t-2 (MEMlow=2) 
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sizes because of the need to update all of the survivor paths. Because the update procedure is meaningful 
only for the ML path, an implementation of the SOVA decoder that only performs the update procedure for 
the ML path is shown in Fig.. 5.

The SOVA decoder inputs L(u) and Lcy, the a-priori values and the weighted received values respectively 
and outputs u' and L(u'), the estimated bit decisions and its associated “soft” or L-values respectively. This 
implementation of the SOVA decoder is composed of two separate SOVA decoders. The first SOVA 
decoder computes the metrics for the ML path only and does not compute (suppresses) the reliability 
values. The shift registers are used to buffer the inputs while the first SOVA decoder is processing the ML 
path. The second SOVA decoder (with the knowledge of the ML path) recomputes the ML path and also 
calculates and updates the reliability values. As it can be seen, this implementation method reduces the 
complexity in the updating process. Instead of keeping track and updating 2m survivor paths, only the ML 
path needs to be processed.

3 SOVA Iterative Turbo Code Decoder 
The iterative turbo code decoder is composed of two concatenated SOVA component decoders. Figure 6 
shows the turbo code decoder structure.
        The turbo code decoder processes the received channel bits on a frame basis. As shown in Figure 6, the 
received channel bits are demultiplexed into the systematic stream y1 and two parity check streams y2 and 
y3 from component encoders 1 and 2 respectively [8]. These bits are weighted by the channel reliability 
value and loaded on to the CS registers. The registers shown in the figure are used as buffers to store 
sequences until they are needed. The switches are placed in the open position to prevent the bits from the 
next frame from being processed until the present frame has been processed.
       Figure 6 shows that the turbo code decoder is a closed loop serial concatenation of SOVA component 
decoders. In this closed loop decoding scheme, each of the SOVA component decoders estimates the 
information sequence using a different weighted parity check stream. The turbo code decoder further 
implements iterative decoding to provide more dependable reliability/a-priori estimations from the two 
different weighted parity check streams, hoping to achieve better decoding performance.

RESULTS
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Figure 5: SOVA decoder implementation 

 
Figure 6: SOVA iterative turbo code decoder 
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The performance of the rate 1/3 turbo code in soft decision Viterbi decoding for different  constraint lengths 
is shown in Result 1. In this figure, it can be seen that as the constraint length increases, the performance of 
the code also increases, resulting in lower BER. This is the typical characteristic of any convolutional code.

The performance of the rate 1/3 turbo code in soft decision Viterbi decoding for different  
constraint lengths is shown in Result 1. In this figure, it can be seen that as the constraint length increases, 
the performance of the code also increases, resulting in lower BER. This is the typical characteristic of any 
convolutional code.

The simulated performance results of turbo codes with fixed frame sizes but  different rates are 
shown in Result 2. From these figures, it can be seen that for a fixed constraint length, a decrease in code rate 
increases the turbo code performance.

 The simulated performance results of turbo codes with fixed frame sizes, fixed constraint length 
and fixed rate are shown in Result 3. From figure an increase in number of iteration improves the turbo code 
performance. The overall iterative (8 iterations) decoding gain for a turbo code with the same constraint 
length and rates but different frame sizes are shown in Result 4. As shown in these figures, the overall 
iterative decoding gain increases as the frame size increases.
                
CONCLUSION       
         To validate the turbo code simulation, comparisons were made between the simulated and published 
bit error rate (BER) results. There were some differences between the BER results for high Eb/No (>2). 
These differences are believed to be caused by two independent factors, namely, the numerical inaccuracies 
introduced by the workstations and the lack of “critical” details about the SOVA decoding algorithm. The 
BER performance for turbo codes is investigated for many different cases. 
These different cases are summarized under the following three main categories:

1. Turbo code BER performance of 10 decoding iterations for fixed code rates and constraint 
lengths but different frame sizes.

2. Turbo code BER performance of 10 decoding iterations for fixed frame sizes but different code 
rates and constraint lengths.
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3. Turbo code BER performance improvement between 1 decoding iteration and 10 decoding iterations for 
fixed code rates and constraint lengths but different frame sizes.

The simulation results showed many interesting properties about turbo codes that are in the same 
direction with current published research work. Some of these important results are listed below:
·  For a fixed turbo code encoder, its performance improves as the frame size increases.
·  For a fixed frame size, the turbo code performance increases under two different conditions. First, for a 
fixed constraint length, a decrease in code rate improves the performance. Second, for a fixed code rate, an 
increase in constraint length improves the performance.
·  Substantial decoding gain is observed if more than one decoding iteration is used. As it is known by now, 
turbo code decoding can become computationally intensive. As a result, most of the simulated performance 
results are for high code rates, short constraint lengths, and small frame sizes.
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