Vol II Issue XI Dec 2012

ISSN No : 2230-7850

Monthly Multidisciplinary Research Journal

Indian S treams Research Journal

Executive Editor

Ashok Yakkaldevi

Editor-in-chief

H.N.Jagtap

Welcome to ISRJ

RNI MAHMUL/201 1/38595

ISSN No.2230-7850

Indian Streams Research Journal is a multidisciplinary research journal, published monthly in English, Hindi & Marathi Language All research papers submitted to the journal will be double - blind peer reviewed referred by members of the editorial Board readers will include investigator in universities, research institutes government and industry with research interest in the general subjects.

International Advisory Board

Flávio de São Pedro Filho Federal University of Rondonia, Brazi	Mohammad Hailat Dept. of Mathmatical Sciences, University of South Carolin A iken, Aiken S	Hasan Baktir English Language and Literature cDepartment, Kayseri
Regional Centre For Strategic Studies	29801 s, Sri Abdullah Sabbagh Engineering Studies, Sydney	GhayoorAbbas Chotana Department of Chemistr∳ahore University of Management Sciences [PK
Janaki Sinnasamy Librarian, University of Malaya [Malaysia]	Catalina Neculai University of CoventryUK] Anna Maria Constantinovici AL. I. Cuza UniversityRomania
Romona Mihaila Spiru Haret UniversiţyRomania	Ecaterina Patrascu Spiru Haret UniversityBucharest	Horia Patrascu Spiru Haret UniversiţyBucharest, Romania
Delia Serbescu Spiru Haret UniversiţyBucharest, Romania	Loredana Bosca Spiru Haret UniversityRomania	Ilie Pintea, Spiru Haret UniversityRomania
Anurag Misra DBS College, Kanpur	Fabricio Moraes dalmeida Federal University of Rondonia, Brazil	XiaohuaYang PhD, USA
Titus Pop	Geoge - Calin SERIAN Postdoctoral Researcher	College of Busines&dministration
	Edtorial Board	
PratapVyamktrao Naikwade ASPCollege Devrukh,Ratnagiri,MS In	Iresh Swami dĒax - VC. Solapur UniversiţySolapur	Rajendra Shendge Director, B.C.U.D. Solapur Universiţy Solapur
R. R. Patil Head Geology Department Solapur University, Solapur	N.S. Dhaygude Ex. Prin. Dayanand College, Solapur	R. R.Yalikar Director Managment Institute, Solapur
Rama Bhosale Prin. and Jt. Director Higher Educatio Panvel	Narendra Kadu Jt. Director Higher Education, Pune n, K. M. Bhandarkar	Umesh Rajderkar Head Humanities & Social Science YCMOU, Nashik
Salve R. N. Department of SociologyShivaji University, Kolhapur	Praful Patel College of Education, Gondia Sonal Singh Vikram University Ujjain	a S. R. Pandya Head Education Dept. Mumbai University Mumbai
Govind P.Shinde BharatiVidyapeeth School of Distance Education CenteNavi Mumbai	G. P. Patankar S. D. M. Degree College, Honay á rarnatak	Alka Darshan Shrivastava æhaskiya Snatkottar Mahavidyalaya, Dhar
Chakane Sanjay Dnyaneshwar Arts, Science & Commerce College,	Maj. S. Bakhtiar Choudhary Director,HyderabadAP India.	Rahul Shriram Sudke Devi Ahilya Vishwavidyalaya, Indore

S.KANNAN

Ph.D.-University of Allahabad

S.Parvathi Devi

Awadhesh Kumar Shirotriya SecretaryPlay India Play (Tust),Meerut Sonal Singh

Indapur, Pune

Ph.D ,Annamalai Universit,TN

Satish Kumar Kalhotra

Addr ess:-AshokYakkaldevi 258/34, RaviwarPeth, Solapur- 413 005 Maharashtra, India Cell : 9595 359 435, Ph No: 02172372010 Email: ayisrj@yahod/i/ebsite: wwwisrj.net

design will be based on IS800 system and bottom layer

The results are compared with different span to height ratios and support conditions for the deflection, weight of structured concerte for pedestal, to determine optimum configuration by overall.

KEYWORDS:

Double layer steel dome.

INTRODUCTION:

Architects and engineers are always seeking new ways of solving the problem of space enclosure. The search for new structural forms to accommodage lanobstructed areas has always been the main objective of architects and enginee/Mith the industrialization and development of the modern world, there is a demand forfiedient and adaptable long-span structures. Space structures are a valuable tool for the architect or engineer in the search for new forms, owing to their wide diversity and flexibility wing interest in space frame structures has been witnessed worldwide over the last half/Withthre advent of new building techniques and construction materials, space frames frequently provide the right answer and satisfy the requirements for lightness, econgarmy speedy construction. Significant progress has been made in the process of the development of the space framege amount of theoretical and experimental research programs was carried out by many universities and research institutions in various doubatries. result, a great deal of useful information has been disseminated and fruitful results have been put into practice.

Most structures in common use consist of elements such as beams, columns, trusses and portal frames which are basically two dimensional structural members, the point of view of analysis as well as design. Interconnecting members in the third dimension (e.g. purlins) are always of a secondary, character

Title: "PARAMETRIC STUDY OF DOUBLE LAYER STEEL DOME WITH REFERENCET O SPAN TO HEIGHT RATIO" Sour ce:Indian Streams Research Journal [2230-7850]AJIT S. PATIL AND H. S. JADHAV. yr:2012 vol:2 iss:1

present merely for the purpose of transferring load and not supporting function of the structure. fundamental advantage and economy of a form of structural assembly in which there is integrated load sharing is obvious, since every part of the structure makescontives contribution. In such a system no single member is necessarily a principle one and failure in an individual member is not a matter of structural consequence.

Space structure in which the above three dimensional function is realized are thus of considerable importance. These structures are being used in the construction industry to an increasing begin. essentially involve analysis and design in three rather than two dimension.

THEORETICAL BACKGROUND:

A space structure is a structural system in the form of a three dimensional assembly of elements, resisting loads which can be applied at any point, inclined at any angle to the surface of the structure and acting in any directionThe individual members may be made up of rolled, extruded or fabricated sections. The three dimensional character includes flat surfaces with loading perpendicular to the plane as well as curved surfaces.

The space frame can be constructed either in a flat or a curved sufface arliest form of space frame structures is a single layer grid. By adding intermediate grids and including rigid connecting to the joist and girder framing system, the single layer grid is formed as opposed to the linear transfer of the load in an ordinary framing system. Since such load transfer is mainly by bending, for sprans, the bending stiffness is increased mostic frame by going to a double layer system that is primarily membrane-like action.

As per the state of the art report by IASS, space frames are defined as bespaceAframe is a structural system assembled of linear elements which transfers the that forces in three dimensional manners. In some cases constituent elements may be two dimensional. Macroscapsipate frame often takes the form of flat or curved surface".

MODELING OF STRUCTURE:

1. Modeling by FORMEX software:

The geometry of the double layer dome is prepared by using FORMEX software, for the Double layer dome, by the program are as follows

2.Modeling by SAPsoftware:

The model developed in formex software is then imported in to Aurther final model generation is as follows,

Figure 3- Angle in elevation for span to height ratio 2 Indian Streams Research Journal/olume 2 Issue 11 • Dec 2012 3

DESIGN AND ANALYSIS OF DOME:

Table 1- Properties of Circular dome

Sr. No.	Height of dome (m)	Span toheight ratio	Sweep Angle	Radius (m)
A	18.75	4	53.13	46.875
В	37.50	2	90	37.500

4

LOAD COMBINA TIONS FOR ANALYSIS OF DOMES:-

As per IS: 800-2007 1) 1.5(DL+LL), 2) 1.5(DD+WL), 3) 1.2(DL+LL+WL), 4) 0.9DL+1.2LL+1.2WL

5

	С	artesian	1	Speri	cal				F Norma			
Node No.	CO- X (m)	•ordinate Y (m)	es Z (m)	è (deg)	Ö (deg)	Cp e	Срі	Area (Sqm)	l to Surfac e (kN)	Fx (kN)	Fy (kN)	Fz (kN)
1	4.18	0.00	39.78	6	0	- 1.0	0. 2	15.36	- 17.06	-1.78	0.00	-16.9
2	2.09	3.62	39.78	6	60	- 1.2	0. 2	15.36	- 19.90	-1.04	-1.80	-19.7
3	-2.09	3.62	39.78	6	120	- 1.2	0. 2	15.36	- 19.90	1.04	-1.80	-19.7
4	-4.18	0.00	39.78	6	180	- 1.2	0. 2	15.36	- 19.90	2.08	0.00	-19.7
5	-2.09	-3.62	39.78	6	240	- 1.2	0. 2	15.36	- 19.90	1.04	1.80	-19.7
6	2.09	-3.62	39.78	6	300	- 1.2	0. 2	15.36	- 19.90	-1.04	1.80	-19.7
7	20.08	0.00	45.11	11	0	- 0.8	0. 2	15.88	- 14.70	-2.80	0.00	-14.4
8	17.39	10.04	45.11	11	30	- 0.8	0. 2	16.11	- 14.91	-2.46	-1.42	-14.6
9	10.04	17.39	45.11	11	60	- 1.0	0. 2	15.88	- 17.64	-1.68	-2.91	-17.3
10	0.00	20.08	45.11	11	90	- 1.0	0. 2	16.11	- 17.89	0.00	-3.41	-17.5
11	-10.04	17.39	45.11	11	120	- 1.0	0. 2	15.88	- 17.64	1.68	-2.91	-17.3
12	-17.39	0 10.04	45.11	11	150	- 1.0	0. 2	16.11	- 17.89	2.96	-1.71	-17.5
13	-20.08	3 0.00	45.11	11	180	- 1.0	0. 2	15.88	- 17.64	3.37	0.00	-17.3
14	-17.39	-10.04	45.11	11	210	- 1.0	0. 2	16.11	- 17.89	2.96	1.71	-17.5
15	-10.04	-17.39	45.11	11	240	- 1.0	0. 2	15.88	- 17.64	1.68	2.91	-17.3
16	0.00	-20.08	8 45.11	11	270	- 1.0	0. 2	16.11	- 17.89	0.00	3.41	-17.5
17	10.04	-17.39	45.11	11	300	- 1.0	0. 2	15.88	- 17.64	-1.68	2.91	-17.3
18	17.39	-10.04	45.11	11	330	- 0.8	0. 2	16.11	- 14.91	-2.46	1.42	-14.6

Table No.: - 2 Wind load on dome of span to height ratio 2

Table No. 3Member group forces and section for span to height ratial 2ottom nodes supported

Member	Max Comp.	Max Tension.	Length	Section mm
Groups	kN	kN	m	
A	36.594	74.986	2.934	50-60.3-3.6
В	29.523	108.672	3.481	65-76.1-3.2
С	30.743	92.239	3.793	65-76.1-3.2
D	103.23	50.489	3.942	90-101.6-3.6
Е	138.739	1.621	4.033	100-114.3-3.6
	I	Diagonal Member		
А	156.511	20.859	4.667	110-127-4.5
В	106.225	33.106	4.715	100-114.3-3.6
С	124.841	16.862	4.745	100-114.3-4.5
D	130.797	0	4.562	100-114.3-4.5
		Chord Member		
А	96.271	41.058	4.985	100-114.3-3.6
В	74.795	53.433	5.219	90-101.6-4
С	118.274	49.354	5.305	110-127-4.5
D	162.393	16.042	5.246	110-127-4.8
		Bottom layer		
	ŀ	lorizontal Member		
А	16.238	68.112	2.751	40-48.3-2.9
В	0	100.056	3.147	40-48.3-3.2
С	2.664	96.852	3.468	40-48.3-3.2
D	60.003	54.216	3.696	80-88.9-3.2
E	90.617	18.744	3.781	80-88.9-4
		Diagonal Member		
А	142.703	25.691	4.508	100-114.3-4.5
В	149.184	22.885	4.637	110-127-4.5
С	120.014	35.871	4.634	100-114.3-4.5
D	106 954	20 555	4 277	90-101 6-4

7

		Chord Member		
А	136.719	37.327	4.648	100-114.3-4.5
В	140.039	21.138	4.893	110-127-4.5
С	96.645	38.427	4.973	100-114.3-3.6
D	99.716	35.024	4.918	100-114.3-3.6
		Bracing 1		
А	0	58.075	2.5	25-33.7-3.2
В	8.356	29.599	2.5	25-33.7-3.2
С	6.723	38.818	2.5	25-33.7-2.6
D	15.411	43.235	2.5	32-42.4-2.6
		Bracing 2		
А	37.278	23.293	3.767	65-76.1-3.2
В	30.242	21.53	4.17	65-76.1-3.2
С	49.416	11.375	4.452	80-88.9-3.2
D	64.621	9.628	4.533	80-88.9-4
А	118.033	0	5.024	100-114.3-3.6
В	71.241	0	5.381	90-101.6-4
С	15.937	6.025	5.582	65-76.1-3.2
D	34.855	1.946	5.62	80-88.9-3.2
Е	55.552	4.245	5.468	90-101.6-3.6
А	22.887	41.919	5.177	65-76.1-3.2
В	72.587	16.508	5.381	90-101.6-4
С	77.278	6.831	5.441	100-114.3-3.6
D	64.273	2.314	5.62	90-101.6-4
E	58.286	0	5.61	90-101.6-3.6

Table No. 4 Member group forces and section for span to height ratio-4all bottom nodes supported

Тор									
Horizontal Member									
Member Groups	MAX COMP. kN	MAX TENS. kN	LEMGTH m	SECTION mm					
А	19.213	57.916	3.95	50-60.3-2.9					
В	62.049	61.346	4.17	80-88.9-3.2					
С	145.704	5.431	4.29	100-114.3-4.5					
D	182.618	0	4.29	110-127-4.5					
	C	Diagonal Member							
А	48.357	45.277	5.3064	80-88.9-4					
В	118.635	36.226	5.3067	110-127-4.5					
С	154.84	6.651	5.1692	110-127-4.5					
D	151.682	0	4.5194	110-127-4.5					
		Chord Member							
A	7.6	44.66 5.5229		50-60.3-2.9					
В	121.985	55.716	5.6567	110-127-4.5					
С	211.652	20.545	5.6335	135-152.4-4.5					
D	190.466	0	4.1611	110-127-4.5					
		Bottom							
	Н	orizontal Member							
A	22.188	70.518	3.6634	50-60.3-2.9					
В	28.942	71.847	3.8984	65-76.1-3.2					
С	97.64	37.875	4.0485	90-101.6-3.6					
D	129.795	0	4.0733	100-114.3-3.6					
	C	iagonal Member							
А	212.472	0	5.0376	125-139.7-4.8					
В	171.295	0	5.038	110-127-4.8					
С	128.155	17.655	4.9074	100-114.3-4.5					
D	120.459	0	4.2905	100-114.3-3.6					

Indian Streams Research Journal/olume 2 Issue 11 • Dec 2012

8

Chord Member										
А	136.809	0	5.2888	110-127-4.5						
В	159.62	0	5.3264	110-127-4.8						
С	126.564	11.284	5.3702	110-127-4.5						
D	140.951	19.961	5.3483	110-127-4.5						
E	114.007	0	5.3702	110-127-4.5						
		Bracing 1		-						
A	18.086	43.858	2.5	32-42.4-3.2						
В	6.187	41.919	2.5	25-33.7-2.6						
С	0	47.611	2.5	25-33.7-2.6						
D	17.335	0	2.5	32-42.4-3.2						
		Bracing 2								
A	45.837	18.431	4.179	50-60.3-2.9						
В	62.249	41.867	4.236	80-88.9-4						
С	46.677	9.035	4.414	80-88.9-3.2						
D	53.922	0	4.321	80-88.9-3.2						
A	12.099	13.492	5.308	50-60.3-2.9						
В	19.672	21.365	5.408	65-76.1-3.2						
С	36.845	6.337	5.408	80-88.9-3.2						
D	45.945	0	5.346	80-88.9-4						
E	59.598	23.466	5.033	90-101.6-3.6						
A	92.758	1.016	5.308	100-114.3-3.6						
В	74.012	0	5.408	100-114.3-3.6						
С	61.328	0	5.408	90-101.63.6						
D	58.878	0	5.346	90-101.63.6						
E	42.506	0	5.033	80-88.9-3.2						

Indian Streams Research Journal/olume 2 Issue 11 • Dec 2012

9

Table No. 5Foundation Details

Sr.	Span	Support	Size of	Thicknes	sNo. &	Length	Pedestal	Hub	Weld
No	to	Condition	base	of Plate	Dia. Of	of	size	Dia.	length
	Heigh		plate		Anchor	anchor			of
	t ratio				bolt	bolt			plate & hub
			mm	mm		mm	mm	mm	mm
1	2-A	All Node	375 x 375	5 16	8-24mm Ø	410	1000x1000 x 425	125	375
2	2-B	All Node	275x 275	12	4-12mm Ø	315	500 x 500 x 325	< 65	100
3	2-A	Alternate Node	450 x450	20	8-30mm Ø	530	1250x1250 x 550	200	628.4
4	2-B	Alternate Node	300 x 300) 16	4-20mm Ø	445	750 x 750 x 460	< 80	215
5	2-A	2-Alternate Node	550 x 550) 16	12-36mm Ø	ý 425	1500x1500 x 450	300	800
6	2-B	2- Alternate Node	375 x 375	5 16	8-24mm Ø	390	1000x1000 x 400	125	350
7	4	All Node	375 x 375	5 16	8-24mm Ø	340	900x900x 350	100	300
8	4	Alternate Node	475 x 475	5 16	8-30mm Ø	510	1250x1250 x 525	200	600
9	4	2- Alternate Node	575 x 575	5 16	12-36mm Ø	¢ 470	1600x1600 x 490	300	910

DISCUSSION OF RESULT:

The domes of span 75m with fet fent span to height ratio as well as editent support condition are designed for wind loat the members of dome are designed for axial tension or compression in such a way to get optimum weight of member he results shown in figure 5 to 14 of this chapter are for the weight of base plat, volume of concrete for pedestal, weight of member and deflection of domes.

1.WEIGHT OF DOME

Table No.6/Veight of base plate and volume of concrete

Span	Height	Span to Height ratio	Radius	Sweep Angle	Support Conditio	n No. of footing	Base pla g weight kN	tè∕olume of Concrete m³
(m)	(m)		(m)	(deg.)				
75	37.5	2	37.5	90	All node	192	46.75	97.2
					Alternate node	96	40.64	107.34
					Two alternate node	64	34.99	90.40
75	18.75	4	46.875	53.13	All node	66	11.45	18.711
					Alternate node	33	9.19	27.070
					Two alternate	00	0.07	07 507

Figure 6 Volume of concrete for pedestal

The Table No. 5 and figure 6 shows the weight of dome for end for the supporting condition, with Span to Height ratio 4 (all bottom nodes supported) gives lowest weight 2.18 kN/m2 derived from all cases.

11

Table 7 Results of domes

Span (m)	Height (m	Span to) leight rat	Radius ^{io} (m)	Sweep Angle (deg.)	Support Condition	Weight (kN)	Max. Compression (KN)	Max Tension (kN)
75	37.5	2	37.5	90	All node	15428.506	162.393	108.672
					Alternate node	15792.932	270.942	119.317
					Two alternate node	e 15595.613	371.686	157.721
75	18.75	4	46.875	53.13	All node	9623.782	212.472	71.847
					Alternate node	9837.803	384.41	127.148
					Two alternate nod	9936.219	543.89	188.076

Figure 7Weight of members

2. DEFLECTION OF DOME:

The following figures show the deflection of dome [Ref. figure 8 to 14] for the red function, the maximum deflection of the fent domes is tabulated in table No. 7 and figure 14.

Indian Streams Research JournaVolume 2 Issue 11 • Dec 2012

12

