Vol II Issue XI Dec 2012 Impact Factor : 0.2105

ISSN No : 2230-7850

Monthly Multidisciplinary Research Journal

Indían Streams Research Journal

Executive Editor

Ashok Yakkaldevi

Editor-in-chief

H.N.Jagtap

IMPACT FACTOR : 0.2105

Welcome to ISRJ

RNI MAHMUL/2011/38595

ISSN No.2230-7850

Indian Streams Research Journal is a multidisciplinary research journal, published monthly in English, Hindi & Marathi Language. All research papers submitted to the journal will be double - blind peer reviewed referred by members of the editorial Board readers will include investigator in universities, research institutes government and industry with research interest in the general subjects.

International Advisory Board

international Advisory board			
	Flávio de São Pedro Filho Federal University of Rondonia, Brazil Kamani Perera	Mohammad Hailat Dept. of Mathmatical Sciences, University of South Carolina Aiken, Aiken SC 29801	Hasan Baktir English Language and Literature Department, Kayseri
	Regional Centre For Strategic Studies, Sri Lanka		Ghayoor Abbas Chotana Department of Chemistry, Lahore University of Management Sciences [PK
	Janaki Sinnasamy Librarian, University of Malaya [Malaysia]	Catalina Neculai University of Coventry, UK] Anna Maria Constantinovici AL. I. Cuza University, Romania
	Romona Mihaila Spiru Haret University, Romania	Ecaterina Patrascu Spiru Haret University, Bucharest	Horia Patrascu Spiru Haret University, Bucharest, Romania
	Delia Serbescu Spiru Haret University, Bucharest, Romania	Loredana Bosca Spiru Haret University, Romania	Ilie Pintea, Spiru Haret University, Romania
	Anurag Misra DBS College, Kanpur	Fabricio Moraes de Almeida Federal University of Rondonia, Brazil	Xiaohua Yang PhD, USA Nawab Ali Khan
	Titus Pop	George - Calin SERITAN Postdoctoral Researcher	College of Business Administration
Editorial Board			
	Pratap Vyamktrao Naikwade ASP College Devrukh,Ratnagiri,MS India	Iresh Swami Ex - VC. Solapur University, Solapur	Rajendra Shendge Director, B.C.U.D. Solapur University, Solapur
	R. R. Patil Head Geology Department Solapur University, Solapur	N.S. Dhaygude Ex. Prin. Dayanand College, Solapur	R. R. Yalikar Director Managment Institute, Solapur
	Rama Bhosale Prin. and Jt. Director Higher Education, Panvel	Narendra Kadu Jt. Director Higher Education, Pune K. M. Bhandarkar	Umesh Rajderkar Head Humanities & Social Science YCMOU, Nashik
	Salve R. N. Department of Sociology, Shivaji University, Kolhapur	Praful Patel College of Education, Gondia Sonal Singh Vikram University, Ujjain	S. R. Pandya Head Education Dept. Mumbai University, Mumbai
	Govind P. Shinde Bharati Vidyapeeth School of Distance Education Center, Navi Mumbai	G. P. Patankar S. D. M. Degree College, Honavar, Karnataka	Alka Darshan Shrivastava Shaskiya Snatkottar Mahavidyalaya, Dhar
		Maj. S. Bakhtiar Choudhary	Rahul Shriram Sudke

Ph.D.-University of Allahabad

Director, Hyderabad AP India.

S.Parvathi Devi

Ph.D , Annamalai University, TN

Devi Ahilya Vishwavidyalaya, Indore

Awadhesh Kumar Shirotriya Secretary, Play India Play (Trust),Meerut Sonal Singh

Chakane Sanjay Dnyaneshwar Arts, Science & Commerce College,

Indapur, Pune

Satish Kumar Kalhotra

S.KANNAN

Address:-Ashok Yakkaldevi 258/34, Raviwar Peth, Solapur - 413 005 Maharashtra, India Cell : 9595 359 435, Ph No: 02172372010 Email: ayisrj@yahoo.in Website: www.isrj.net

Indian Streams Research Journal Volume 2, Issue.11,Dec. 2012 ISSN:-2230-7850

Available online at www.isrj.net

ORIGINAL ARTICLE

COAXIAL DOUBLE GATE SCHOTTKY BARRIER CARBON NANOTUBE FIELD EFFECT TRANSISTORS: THEORETICAL OVERVIEW

MANIBHUSHAN

RESEARCH SCHOLAR, J.P.UNIVERSITY, CHAPRA

Abstract:

Carbon nanotube field-effect transistors (CNTFETs) have been studied in recent years as a potential alternative to CMOS devices, because of the capability of ballistic transport. The ambipolar behavior of Schottky barrier CNTFETs limits the performance of these devices. A double gate design is proposed to suppress this behavior. In this structure the first gate located near the source contact controls carrier injection and the second gate located near the drain contact suppresses parasitic carrier injection. To avoid the ambipolar behavior it is necessary that the voltage of the second gate is higher or at least equal to the drain voltage. The behavior of these devices has been studied by solving the coupled Schr odinger-Poisson equation system. We investigated the effect of the second gate voltage on the performance of the device and finally the advantages and disadvantages of these options are discussed.

KEYWORDS:

Schottky barrier, CNTFETs, & Schr"odinger-Poisson.

INTRODUCTION

Carbon nanotubes (CNTs) have emerged as promising candidates for nanoscale field effect transistors. The contact between metal and CNT can be of Ohmic [1] or Schottky type [2]. Schottky contact CNTFETs operate by modulating the transmission coefficient of the Schottky barriers at the contact between the metal and the CNT [2, 3], but the ambipolar behavior of Schottky barrier CNTFETs limits the performance of these devices [4, 5]. We show that by using a double gate structure the ambipolar behavior of these devices can be suppressed. For simplicity we considered a coaxial geometry where the gate covers all around the CNT.

THEORETICALANALYSIS

Assuming ballistic transport, we used a Schrödinger-Poisson solver for the analysis of Schottky barrier CNTFETs [6].

$$-\frac{\hbar^2}{2\mathrm{m}^*}\frac{\partial^2\Psi_{\mathrm{s}}}{\partial x^2} + (\mathrm{U}-\mathcal{E})\Psi_{\mathrm{s}} = 0 \qquad (1) \quad \nabla^2\epsilon\phi = -\frac{\mathrm{q}(p-n)\delta(\rho-\rho_{\mathrm{cnt}})}{2\pi\rho} \qquad (2)$$
$$n_{\mathrm{s}} = \frac{4}{2\pi}\int f_{\mathrm{s}}|\Psi_{\mathrm{s}}|^2\mathrm{d}k_{\mathrm{s}} = \int \frac{\sqrt{2\mathrm{m}^*}}{\pi\hbar\sqrt{\mathcal{E}_{\mathrm{s}}}}f_{\mathrm{s}}|\Psi_{\mathrm{s}}|^2\mathrm{d}\mathcal{E}_{\mathrm{s}} \qquad (3) \quad I_{\mathrm{d}} = \frac{4\mathrm{q}}{\mathrm{h}}\int [f_{\mathrm{s}}(\mathcal{E}) - f_{\mathrm{d}}(\mathcal{E})]TC(\mathcal{E})\mathrm{d}\mathcal{E} \qquad (4)$$

Title : COAXIAL DOUBLE GATE SCHOTTKY BARRIER CARBON NANOTUBE FIELD EFFECT TRANSISTORS: THEORETICAL OVERVIEW Source:Indian Streams Research Journal [2230-7850]MANIBHUSHAN yr:2012 vol:2 iss:11

COAXIAL DOUBLE GATE SCHOTTKY BARRIER CARBON NANOTUBE

2

In (1) the effective mass was assumed to be $m^* = 0.06m_0$ [3]. In (2) $n = n_s + n_d$ and $p = P_s + P_d$ represent the contribution of the source and drain to the electron and hole concentrations calculated as (3), where is the Dirac delta function in cylindrical coordinate. Carriers were considered as charge sheets and because of cylindrical symmetry they were distributed uniformly over the surface of the CNT. The drain current is calculated within the Landauer-Büttiker formula as in (4) where f_s , d are equilibrium Fermi functions at the source and drain contacts and $TC(\varepsilon)$ is the transmission coefficient through the device. The factor 4 in (3) and (4) stems from the twofold band and twofold spin degeneracy [2]. In this work we focus on ambipolar devices, where the metal Fermi level is located in the middle of the CNT band gap at each contact. All our calculations assume a CNT with 0.6 eV band gap, corresponding to a diameter of 1.4 nm [3]. First we consider a coaxial single gate CNTFET as in Fig. 1. Fig. 3 and Fig. 5 show the ambipolar behavior of this structure, in agreement with [4, 5]. To understand this behavior the band edge profile is shown in Fig. 4. Applying positive voltages higher than the gate voltage to the drain of n-type devices suppresses the Schottky barrier near the drain and consequently increases hole injection at the drain. In the off regime this results in a high off-current, and in the on regime the drain current increases with respect to the drain voltage instead of saturation. To avoid this phenomenon a coaxial double gate structure as in Fig. 2 can be used. If the drain voltage is applied to the second gate, at any drain voltage the band edge profile near the drain would be flat, see Fig. 4.

CONCLUSION

In consequence the tunneling current of holes at the drain is suppressed, and there is just some thermionic emission current of holes which is nearly independent of the drain voltage, see Fig. 3. While electron injection at the source contact can be controlled via the first gate, the second gate suppresses parasitic whole current at the drain.

REFERENCES

[I] A. Javey et al., Lett. to Nature 424, 654 (2003).
[2] S. Heinze et al., Phys. Rev. Lett. 89, 6801 (2002).
[3] J. Appenzeller et al., Phys. Rev. Lett. 92, 8301 (2004).
[4] R. Martel et al., Phys. Rev. Lett. 87, 6805 (2001).
[5] J. Guo et al., IEEE Trans.ED 51, 172 (2004).
[6] D. John et al., in Proc. NSTJ Nanotech (2004).

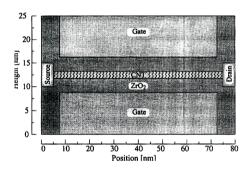
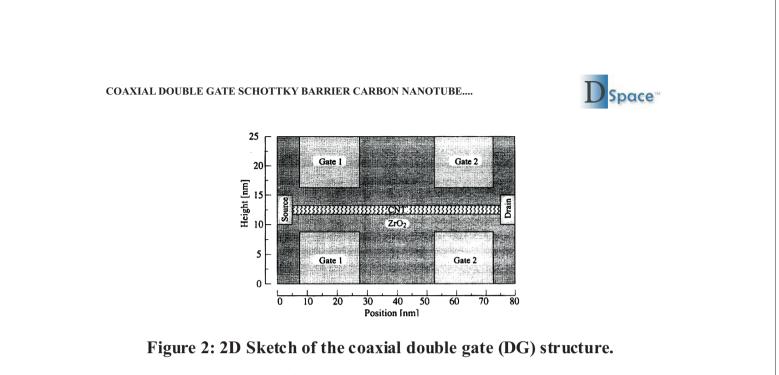



Figure 1: 2D Sketch of the coaxial single gate (SG) structure.

Indian Streams Research Journal • Volume 2 Issue 11 • Dec 2012

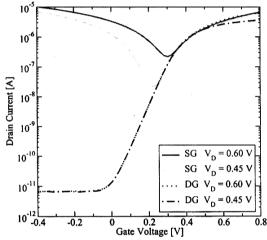
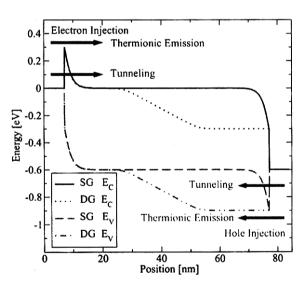



Figure 3: I-V characteristics of the coaxial SG and DG structures.

Figure 4: Band edge profile of the coaxial SG and DG structures.

3

Indian Streams Research Journal • Volume 2 Issue 11 • Dec 2012

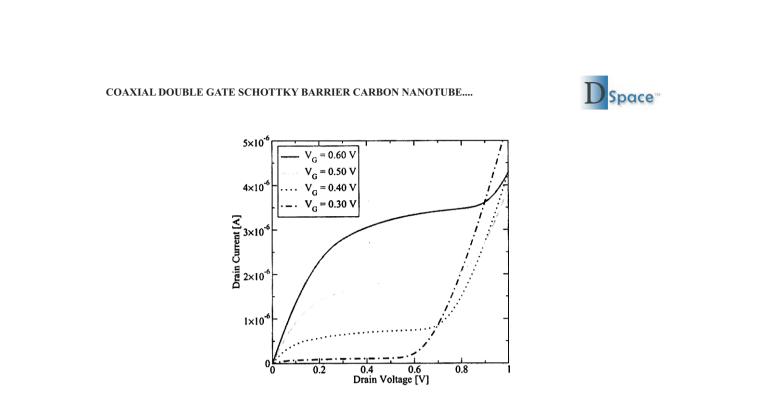


Figure 5: I-V characteristics of the coaxial SG structure.

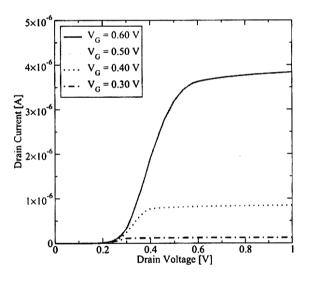


Figure 6: I-V characteristics of the coaxial DG structure.

Indian Streams Research Journal • Volume 2 Issue 11 • Dec 2012

4

Publish Research Article International Level Multidisciplinary Research Journal For All Subjects

Dear Sir/Mam,

We invite unpublished research paper.Summary of Research Project,Theses,Books and Books Review of publication,you will be pleased to know that our journals are

Associated and Indexed, India

- ★ International Scientific Journal Consortium Scientific
- ★ OPEN J-GATE

Associated and Indexed, USA

- Google Scholar
- EBSCO
- DOAJ
- Index Copernicus
- Publication Index
- Academic Journal Database
- Contemporary Research Index
- Academic Paper Databse
- Digital Journals Database
- Current Index to Scholarly Journals
- Elite Scientific Journal Archive
- Directory Of Academic Resources
- Scholar Journal Index
- Recent Science Index
- Scientific Resources Database

Indian Streams Research Journal 258/34 Raviwar Peth Solapur-413005,Maharashtra Contact-9595359435 E-Mail-ayisrj@yahoo.in/ayisrj2011@gmail.com Website : www.isrj.net