
Research Paper - Computer Science

Implementing 3-tier Architecture

in C#.net
- Mr. Mahesh Sarvade

M.C.M.

Hitachi Consulting, Pune.

Indian Streams Research Journal / 173

A long ago programmers used to write

much lines of code and various logical functions

and procedure to support reuse of their code. But in

modern world you have to go beyond just

reusability and mere programming logic. Today's

applications demands vast data support, User

Interface Improvisation, data security and dynamic

business needs. Here the 3-tier applications came

into picture to solve developer's problem.

Separating the tiers in applications helps

programmer to concentrate on very particular logic

and build strong and dynamic programming

architecture to support business applications.

Theoretically many of you have read about concept

and working of 3-tier architecture so will go

directly to implementation of 3-tier architecture in

c#.net.

As you already know there are 3-tiers in

architecture each of which is as follow.

1) Data Access Layer:

The layer which is responsible for

accessing the data from databases. You can write

your connection string, various data accessing

functions like Executing commands and filling of

datasets.

2) Business Layer or Logic Layer:

This is layer where you can write the

business logic such as calculation of Salary etc.

The Layer consists of various properties and stored

procedure accessing functions for selection,

insertion, updation and deletion of data.

3) Presentation Layer or Application Layer:

The application layer takes care of your

User Interface representation, data display and

event handling.

Now we will see how to write codes for

following layer. We will consider a login form

scenario for implementing our 3-tier. User will

enter his username and password and then logged

onto system. We are using following resources to

develop our project.

Database Name: dbAuthenticate

Table Name:

Fields : (Uname, pwd, URole, Status)

A) Data Access Layer:

We will create a new website project named

as "ThreeTierArchitecure" and add App_Code

folder to the project. In App_Code we will create

the new folder named as "DataAccessLayer" And

there we added a code file named as "DBUtil.cs".

Vol. 1, Issue . 1 / February 2011, pp.173-176

Indian Streams Research Journal / 174

In this dbutility file we can add code for

connection string initialization from web.config

and various data accessing functions. A typical

dbutils file contains following code.

public class DBUtils
 {
 SqlConnection con = new SqlConnection();
 SqlCommand cmd = new SqlCommand();
 SqlTransaction sqltrans;

 #region "ConnectionSettings"

/// <summary>Gets the Sql Connection
String by using Web.Config fi le
settings.The name to the connection string
m u s t b e g i v e n a s
"ProjectConnectionString"</summary>

 public string DBgetConnectionString()
 {
 string ConnectionString = "";
 try
 {

C o n n e c t i o n S t r i n g =
System.Configuration.Configurati
onManager.ConnectionStrings["Pr
ojectConnectionString"].ToString(
);

 }
 catch (Exception ex)
 {
 throw ex;
 }
 return ConnectionString;
 }

/// The constructor which
initializes the connection.
 public DBUtils()
 {
 con.ConnectionString =
DBgetConnectionString();
 cmd = con.CreateCommand();
 }

 / / / <summary>"Opens the
Database Connection."</summary>

 private void DBOpenConnection()
 {
 try
 {

i f (c o n . S t a t e = =
C o n n e c t i o n S t a t e . C l o s e d | |
c o n . S t a t e = =
ConnectionState.Broken)

 {
 con.Open();
 }
 }
 catch (Exception ex)
 {
 throw ex;
 }
 }

 /// <summary>"Close the Database
Connection."</summary>
 public void DBCloseConnection()
 {
 con.Close();
 }
 #endregion

 #region "ExecuteOnlyModules"
/// <summary>"Executes the
P a s s e d Q u e r y
string."</summary>

 public int DBExecuteNonQuery(string sql)
 {
 int rowAffected = -1;
 DBOpenConnection();
 cmd.Connection = con;
 sqltrans = con.BeginTransaction();
 cmd.Transaction = sqltrans;
 cmd.CommandText = sql;
 try
 {
 rowAffected =
cmd.ExecuteNonQuery();
 DBCommitTransaction();
 }
 catch (Exception ex)
 {

throw ex;
 }
 finally
 {

Implementing 3-tier Architecture in C#.net Vol. I, Issue. I / February 2011

Indian Streams Research Journal / 175

 cmd.Dispose();
 }
 return rowAffected;
 }

/// <summary>"Committed the
t r a n s a t i o n t o
server."</summary>

 private void DBCommitTransaction()
 {
 sqltrans.Commit();
 sqltrans = null;
 }

/// <summary>"Executes the
Passed Query string and return
the DataReader."</summary>

 p u b l i c S q l D a t a R e a d e r
DBExecuteReader(string sql)
 {
 SqlDataReader reader = null;
 DBOpenConnection();
 cmd.Connection = con;
 cmd.CommandText = sql;
 cmd.CommandType =
CommandType.Text;
 try
 {
 r e a d e r =
cmd.ExecuteReader(CommandBehavior.CloseCo
nnection);
 }
 catch (Exception ex)
 {
 throw ex;
 }
 finally
 {
 cmd.Dispose();
 }
 return reader;
 }
 #endregion

 #region "GetDataModules"

 /// <summary>"Fill the Dataset
by passing SQL Command and
ref Dataset.Returns Dataset on
execution."</summary>

 public void DBGetDataSet(SqlCommand
pcmd, ref DataSet ds)

 {
 SqlDataAdapter da = new

SqlDataAdapter();
 DBOpenConnection();
 pcmd.Connection = con;
 try
 {
 da.SelectCommand = pcmd;
 da.Fill(ds);
 }
 catch (Exception ex)
 {
 throw ex;
 }
 finally
 {
 cmd.Dispose();
 da.Dispose();
 }
 }
 #endregion

For current scenario we only required one

function i.e. "DBGetDataSet". But other

functions are given for practice. Now we moving

onto next layer which is business layer.

B) Bussiness Layer or Logic Layer:
As stated earlier the business layer

consisting of business logic such as calculations.

We can also write properties and stored procedure

logic. Same way as we added DataAccessLayer we

can add this BusinessLayer in our web project. The

code filename is "CtrlLogin.cs".

In this file we can declare the two private

variables named as strUsername and strPassword.

We can encapsulate these fields with get and set

properties. So we can use this public property to

pass to functions or procedures. The typical code

for this is as follows.

/* declaration of private variables */
 private string strUsername;
 private string strPassword;

/* encapsulate these variables to set public

properties */

Implementing 3-tier Architecture in C#.net Vol. I, Issue. I / February 2011

Indian Streams Research Journal / 176

 public string Password
 {
 get {return strPassword; }
 set {strPassword = value; }
 }
 public string Username
 {
 get {return strUsername; }
 set {strUsername = value; }
 }

/* accessing the stored procedure to get

resultset from DButil file. Here we are creating

the object of DButil class and then accessing the

method named as "DBGetDataSet" where we

pass sqlcommand and reference dataset which

gives us resultset contains Roles and status of

user.
 */

 public DataSet sp_CheckLogin(CtrlLogin

objLog)
 {
 DBUtil Odbutil = null;
 Odbutil = new DBUtil(); // creating object of

dbutil class
 DataSet ds = new DataSet();
 try
 {
 SqlCommand cmd = new SqlCommand();
 cmd.CommandType =

CommandType.StoredProcedure;
 cmd.CommandText = "sp_CheckLogin";

// stored proc name

 // passing parameters to stored proc.
cmd.Parameters.AddWithValue("@Username",

objLog.Username);
 cmd.Parameters.AddWithValue("@Pwd",

objLog.Password);

 Odbutil.DBGetDataSet(cmd, ref ds);
 }
 catch (Exception ex)
 {
 }
 finally
 {
 if (Odbutil != null)

 {
 Odbutil.DBCloseConnection();
 }
 }
 return ds;
 // returing dataset which we use to check role

and authenticate in presentation layer
 }

We can use this procedure in presentation

layer for checking authentication.

C) Presentation Layer:
The presentation layer involved in

developing more sophisticated and helps ultimate

user browsing experience. In our scenario we

assume the login control on page which accept

username and password and if user is valid then

redirect him to profile page.

Using this typical login control you can logged

onto system. You can write following code to

authenticate the user.

p r o t e c t e d v o i d

Login1_Authenticate(object sender,

AuthenticateEventArgs e)
 {
 try
 {
 DataSet ds = new DataSet();

//Creating object of Business

layer class
 CtrlLogin objLogin = new

CtrlLogin();
 objLogin.Username =

Login1.UserName;
 objLogin.Password =

Login1.Password;

Implementing 3-tier Architecture in C#.net Vol. I, Issue. I / February 2011

	Page 173
	Page 174
	Page 175
	Page 176

