
ORIGINAL ARTICLE

ISSN No : 2230-7850

Monthly Multidisciplinary
Research Journal

Indian Streams

Research Journal

Executive Editor

Ashok Yakkaldevi

Editor-in-chief

H.N.Jagtap

Vol 3 Issue 9 Oct 2013

Mohammad Hailat
Dept. of Mathmatical Sciences,
University of South Carolina Aiken, Aiken SC
29801

Abdullah Sabbagh
Engineering Studies, Sydney

Catalina Neculai
University of Coventry, UK

Ecaterina Patrascu
Spiru Haret University, Bucharest

Loredana Bosca
Spiru Haret University, Romania

Fabricio Moraes de Almeida
Federal University of Rondonia, Brazil

George - Calin SERITAN
Postdoctoral Researcher

Hasan Baktir
English Language and Literature
Department, Kayseri

Ghayoor Abbas Chotana
Department of Chemistry, Lahore
University of Management Sciences [PK
]
Anna Maria Constantinovici
AL. I. Cuza University, Romania

Horia Patrascu
Spiru Haret University, Bucharest,
Romania

Ilie Pintea,
Spiru Haret University, Romania

Xiaohua Yang
PhD, USA
Nawab Ali Khan
College of Business Administration

 Flávio de São Pedro Filho
Federal University of Rondonia, Brazil

Kamani Perera
Regional Centre For Strategic Studies, Sri
Lanka

Janaki Sinnasamy
Librarian, University of Malaya [
Malaysia]

Romona Mihaila
Spiru Haret University, Romania

Delia Serbescu
Spiru Haret University, Bucharest,
Romania

Anurag Misra
DBS College, Kanpur

Titus Pop

Pratap Vyamktrao Naikwade
ASP College Devrukh,Ratnagiri,MS India

R. R. Patil
Head Geology Department Solapur
University, Solapur

Rama Bhosale
Prin. and Jt. Director Higher Education,
Panvel

Salve R. N.
Department of Sociology, Shivaji
University, Kolhapur

Govind P. Shinde
Bharati Vidyapeeth School of Distance
Education Center, Navi Mumbai

Chakane Sanjay Dnyaneshwar
Arts, Science & Commerce College,
Indapur, Pune

Awadhesh Kumar Shirotriya
Secretary, Play India Play (Trust),Meerut

Iresh Swami
Ex - VC. Solapur University, Solapur

N.S. Dhaygude
Ex. Prin. Dayanand College, Solapur

Narendra Kadu
Jt. Director Higher Education, Pune

K. M. Bhandarkar
Praful Patel College of Education, Gondia

Sonal Singh
Vikram University, Ujjain

G. P. Patankar
S. D. M. Degree College, Honavar, Karnataka

Maj. S. Bakhtiar Choudhary
Director,Hyderabad AP India.

S.Parvathi Devi
Ph.D.-University of Allahabad

Sonal Singh

Rajendra Shendge
Director, B.C.U.D. Solapur University,
Solapur

R. R. Yalikar
Director Managment Institute, Solapur

Umesh Rajderkar
Head Humanities & Social Science
YCMOU, Nashik

 S. R. Pandya
Head Education Dept. Mumbai University,
Mumbai

Alka Darshan Shrivastava
Shaskiya Snatkottar Mahavidyalaya, Dhar

Rahul Shriram Sudke
Devi Ahilya Vishwavidyalaya, Indore

S.KANNAN
Ph.D , Annamalai University,TN

Satish Kumar Kalhotra

 Editorial Board

International Advisory Board

Welcome to ISRJ
ISSN No.2230-7850

 Indian Streams Research Journal is a multidisciplinary research journal, published monthly in English,
Hindi & Marathi Language. All research papers submitted to the journal will be double - blind peer reviewed
referred by members of the editorial Board readers will include investigator in universities, research institutes
government and industry with research interest in the general subjects.

RNI MAHMUL/2011/38595

Address:-Ashok Yakkaldevi 258/34, Raviwar Peth, Solapur - 413 005 Maharashtra, India
Cell : 9595 359 435, Ph No: 02172372010 Email: ayisrj@yahoo.in Website: www.isrj.net

Indian Streams Research Journal Available online at www.isrj.net
Volume-3, Issue-9, Oct-2013
ISSN 2230-7850

Assessing The Software Architecture
Toward Evolution

R. Aroul Canessane And S. Srinivasan
Research Scholar, Sathyabama University, Chennai

Professor & Head, Dept. Of Computer Science and Engineering, Anna University , Madurai

Abstract:The architectures of software system confines non functional requirements (NFR), hence the decisions
that are taken at the time of creating architectural design have a major impact on resulting system. We have proposed
a design methodology for the architecture, which uses an iterative method for evaluating and transforming the
software architecture until the NFRs are satisfied. The evaluation is carried out by means of scenarios, reasoning,
mathematical modelling and simulation. The transformations are carried out by imposing certain architectural
style, design patterns, conversion of NFR to appropriate functionality and distributing the NFR's.

Keywords:Architectural transformation, fault tolerant, performance, interfaces.

I.INTRODUCTION
One of the complex activity is the conversion of the

requirements specification into corresponding software
architecture for the application. Though the other phases of
activities are also challenging, they overcome them with the
methodological approach, procedural and technological
support to the software engineers. The design phase lack in
craftsmanship and formalized procedure like other phases.
The software architecture domain has been creating an
attention by the researchers in the recent years, because of the
NFRs which are influenced by software architectures of the
system. The design that we have may create bottleneck for
the performance and the reliability for the system. The job of
the software engineer is to balance all the requirements while
he makes a design.

In this paper we have presented a design
methodology for providing a support for the design process
for making balanced and optimized NFRs. We have defined
an iterative method to access the degree of architecture,
which supports all the NFRs and refines the architecture until
the NFRs are complimented. The method that we have
proposed complements the traditional methods of designing
that focuses on NFRs rather than the functionalities.

The paper is organised as section 2. Requirements
Engineering, section 3.Method overview, section
4.Architecutural design functionalities, 5.Non functional
requirements, section 6.Architectural transformation,
section 7.Result and Discussions and section 8.conclusion.

REQUIREMENT ENGINEERING
The purpose of requirement engineering is to

identify and specify the requirement, it not the main aim of
us, instead we have used the requirement specification as an
input to the architectural design and we have established
different terminology for different requirement concepts.
System requirements lead the top level of the requirements

which is a combination of software, mechanical
requirements and the hardware. In this paper we
concentrated on only the software requirements and we have
ignored other categories of requirements. The software
requirements are classified as functional and non functional.
The different NFRs are stated as performance, interface,
operational, resource, verification, acceptance, documenta
tion, security, portability, quality, reliability, maintability and
safety requirements (IEEE-std 830). These NFRs are also
called as attributes of system properties. Functional
requirements are highly related to the domain functionalities
of the application. The functionality requirements are
deployed suing the subsystem or components of the
software, whereas the NFRs can be grouped into
developmental NFRs which determine the quality of a
system with respect to the software engineer perception and
operational, e.g. maintainability, flexibility, demonstrability
and reusability. The operational NFRs are defined by the
system operation, e.g. performance, fault tolerance,
robustness and reliability. NFRs cannot be easily pinpointed
as functional requirements are done.

The example that we have taken in this paper is
based on the experience of the SmartHome. Though a
SmartHome (home automation) system consists of different
types of sensors, presentation devices, alarm bells,
communication devices, user interfaces, we move with
simplest functionality behaviour of abstracted system.

Figure1. Input / output view of SmartHome system

R. Aroul Canessane And S. Srinivasan, “Assessing The Software Architecture Toward Evolution” Indian Streams Research

Journal Vol-3, Issue-9 (Oct 2013): Online & Print

1

.

The abstraction of the SmartHome figure 1.consists
of an abstracted set of inputs and a set of outputs which
represents numerous numbers of sensors and its
corresponding indicators. Based on the outputs they
behaviour are implemented using the process for the inputs.
NFR of the safety home system are the worst case in response
time for making an alarm, reliability, availability and
efficiency.

METHOD OVERVIEW
Usually NFRs are dealt with a very informal and

non-methodical approach in the software architectural
design. Tests are used to determine to check whether NFRs
are fulfilled after the implementation. If it is not fulfilled the
part of system is considered for redesign. The system
architects are often building systems in the domain, the
experience of it helps them to minimise the system redesign.
The research on software engineering has spent some effort
in several NFRs, e.g. object oriented system research has
improved in reusability and some of the real-time system
study has helped in developing NFRs. They concentrated on
single NFR and they lack in addressing the combination of
different NFRs. Only a single NFR is not present for a real
time system, it has to achieve multiple NFRs. For example
most of the real time system must be reusable and it must be
maintainable to achieve the cost effectiveness, whereas the
fault tolerant systems must also fulfil the requirements such
as maintainability and timeliness. No such pure fault
tolerant, reusable, real time and high performance system
exist, though the researcher project many artefacts of pure
real-time systems. All the realistic and practical computing
system must satisfy all the NFRs, however constructing such
a system is hard, because of the NFRs conflictions. Such as
reusability and performance, fault tolerant and real-time
computing is contradicting.

Conventional design focuses on the system
functionality and they do not concentrate on non functional
requirements. However so many systems that they have
developed concentrate on single NFR and they lack in
treating other NFRs. They have provided a secondary
importance for the other NFRs. We consider those
approaches as unsatisfactory, because software engineers
have to balance the NFRs for the realistic system.

Method
The method begins by taking the requirements

specification as an input to the method and producing an
architectural design as an output. This is the first version of
the design which is reduced in subsequent phases. The steps
of the methods are represented diagrammatically in the
figure 2. The process is initiated with the architectural design
with the functions that are specified by the requirement
specification, the NFR are addressed explicitly at this stage
though the software engineering will not design the system
which lack in reusability and reliability. The output of this is a
first version of the application architecture. The architecture
is first evaluated by considering the NFR. The NFRs are
given estimated values and they are compared to the actual
values of the requirements. If the estimations are good and
are up to the mark the design process is stopped. Else it enters

into the second stage for architecture transformation. At this
stage the design is improved with the help of appropriate
NFR optimizing transformations. Each transformation
produces a new version of design which is given as a feed
back to earlier stage. The new version is again evaluated, the
process is iteratively repeated until the NFR values are
fulfilled, until the software engineer decides there is no other
feasible solution persists. One NFR based system follows
iteration but only Smith considered performance.

Figure 2. Architecture design method outline

The method presented in this paper was applied to
SmartHome system. Our experiences with this project have
shown us that the architectural design method does not
restrict the creativity of the engineer but instead supports it
throughout.

ARCHITECTURE DESIGN – FUNCTIONALITY
BASED

The requirement specification is used to build the
top level architectural design of the system. The basic task of
this phase is to identify the key components or the core
abstractions based on which the system will be structured.
Though the abstractions are designed as objects, these
modelled objects cannot be found in the application domain
immediately, they are considered as the results of a design
process which analysis's the domain entities, abstractions
and models the architecture entities. As soon as the
abstractions are recognized then the interactions between
those abstractions are elaborated. Identifying all the entities
and defining the architecture in object oriented design and
using those entities they define the inheritance. In our
experience it is not an acceptable thing for going to bottom up
approach rather than going for a top down approach which
deals with the detail information of the system. The
architecture of the SmartHome system consists of basic
entities that are devices and the controllers. But a
SmartHome system consists of sensors different actuators
such as alarm, sleep mode, messaging etc. The identified
entities of the system are not straightforward and concrete
entities of the architecture design covers the multiple
domains.

NON FUNCTIONAL REQUIREMENTS
Identifying and evaluating the non functional

property explicitly is the major characteristic of architectural
design method, without having a complete system available.
The traditional method in a software industry is to evaluate

Assessing The Software Architecture Toward Evolution

2

.

the system after implementation and measure the values for
non functional properties of the system. The disadvantage is
the amount of effort that has been put on developing the
system does not guarantee in fulfilling the non functional
requirements. Several systems have been already developed
for estimating non functional attributes during the
development stage which leads to mishaps. It is not an easy to
measure system properties based on the abstract
specification of an architectural design. On cannot give a
complete measure of NFRs for a system based on
architectural design, rather the aim is to evaluate potentiality
of the architecture that is designed and we can try to reach the
required level of NFRs.

The architectural style that is chooses for a design
cannot provide highly equipped system, each and every style
has its own advantage and disadvantage. Four approaches
are defined in this paper which identifies the non functional
requirements they are scenarios based, simulation based,
mathematical modelling and the objective reasoning.

Evaluation –Scenario based
Scenarios are created for accessing the NRF, which

defines actual meaning of the NFR. Example,
maintainability requirement can be defined by the scenarios
which captures the typical modification in requirements,
with respect to hardware. The scenarios can then be
evaluated with the changes that are required to adapt the
architecture for the appropriate situation. Robustness of the
architecture can also be evaluated with respect to the invalid
outputs.

Scenario representativeness deals with the
effectiveness of the approaches done by scenario based.
Accurate results can be got for the actual specified scenario.
Object oriented method uses the use case scenario which
specifies the system behaviour. Scenarios must be developed
in two sets, one is for the design and another one is for
evaluation. Once the architecture design version is ready, the
software engineer has to run the scenario and results must be
evaluated. At the most the change in scenario, is nothing but
the reorganizing the architecture, which can conclude a low
maintenance in architecture.

The statistical evaluation can be made on the
scenarios by using the testing code of statistics, which define
ratio between the successful scenarios and failed scenarios.
The quality of the scenario is defined by the software
engineer who is running the scenario. In our experience the
scenario based evaluation is useful for the development of
NFRs such as maintainability, which can be easily identified
by changing the scenario. The SmartHome application many
maintenance scenarios can be evaluated as shown in the table
1.

Table 1. Scenario evaluation

The evaluation that is made based on the estimation

of effort required for the new environment adaptation.

Simulation based
Simulation, not only used for evaluating the NFRs,

it also help in evaluating the Functional requirement of a
design. A simulation helps to define the interaction,
behaviours and the functionalities which uncovers
inconsistency in design and details the entities of the
architecture.

Simulating the architecture by implementation of
application architecture is our second approach to estimate
the NFRs. Some components of the architecture are
implemented and some of them are simulated which leads to
a implemented system. The components which have been
implemented can also be simulated with an appropriate
abstraction. Hence the implementation can also be used for
simulation with the application behaviour. After the
simulation of the application has been completed the NFR –
robustness can be easily evaluated by giving faulty input to
the simulated application and find the tolerance among the
architecture entities.

Simulation helps in evaluating the operational
NFRs i.e., fault tolerance, whereas the simulation by
changing the scenario, the maintenance can be defined by
measure the effort. The simulation helps in our SmartHome
example by defining the interface to the physical sensors and
the indicators by using a layer of the software which is used
in communication as show in the figure 3.

Figure 3.Simulation system

The communication and the sensor behaviour can
be simulated, with the help of the interface along the top most
level architecture. A Markov model can be used for
evaluating the scenarios is show in figure 4. Using this
markov model the robustness can be evaluated before the
communication software is designed. The accuracy hence
forth can be defined with respect to the real world
implications. The parameter that has been used in the
SmartHome system has been show in the Table 2.

Table 2. Parameters that has been used in the SmartHome

Assessing The Software Architecture Toward Evolution

3

.

system example.

Mathematical modelling
Research communities actively participating in

various fields, like high performance computing, real-time
systems etc., have developed plenty of mathematical models
that may be used to evaluate and assess the operational
NFRs,

The mathematical models enable us to perform
static evaluation and this is where it is different from the
other approaches. For example, when we engineer high
performance computing systems, mathematical modelling
can be used to evaluate the different application structures
and decide on the one which provides maximum
performance.

Figure 4. Markov model for communication and
sensors

Mathematical modelling and simulation are
alternatives to each other as both methods of evaluation have
the basic idea to assess operational NFRs. But, in some
instances, these two approaches may be combined. For
example, one may use mathematical modelling to estimate
the computational requirements of individual entities in the
design. The simulation then uses these results to estimate
computational requirements of the different sample
execution sequences of the architecture.

In the SmartHome example, we have an alarm
system, using the mathematical modelling we can relate to
one of the NFR, as the worst care response time for the alarm
is 3s. Assuming the model that is shown in figure 5 which has
a poling system were the inputs are evaluated periodically.
One sensors evaluation is done by sending the message to
physical sensor since they have a communication software,
waiting time, receiving time of response and evaluate the
alarm conditions. It this performance model example, we
assumed

Send request needs - 2ms
Receive answer needs - 2ms
Evaluation needs – 5ms
Communication needs – 8ms

If the system needs around 150 sensors, we used a
round robin method for polling. the worst case of response
time can be roughly estimated as

150 * (2+2+5+8) = 3.3s.

Figure 5 Model for sensor value reading

Objective Reasoning
The fourth approach to access the NFRs is via

reasoning using the logical arguments as a base. Software
engineers frequently have insights that may prove extremely
valuable and therefore helpful in avoiding the bad decisions
on design, which comes out of their experience. Most of
these can often be explained by reasoning which is logical in
nature, even though some portions of these are based on the
previous evidence.

The difference from the other approaches in this is
that the assessment process is more implicit and is based on
less objective factors such as experience and intuitive
understanding. This does not mean that this approach is not
as usable. Software architects we interacted had, well-
developed ideas about 'good/bad' designs.

These architects always started the problem with
the intuition of there is something wrong. Based on that
intuition they have made the approach of logical reasoning,
for example an experienced engineer can easily identify the
maintainability problem in architecture, by redesigning the
scenarios he can rectify the major problem easily.

The fire alarm which is used in the SmartHome
application is concurrently inheritable; hence we choose the
concurrency model. When we tried to use pre-emptive
scheduling we are not able to consider the race conditions.
Hence we were implementing a round robin which makes a
line of reasoning that to avoid the architectural
transformation. The round robin transition is shown in the
figure 6.

Figure 6. Round Robin State chart

Assessing The Software Architecture Toward Evolution

4

.

ARCHITECTURAL TRANSFORMATION
After the assessment of the architectural design

properties are completed, the estimated values are then
compared to requirements specification. In case some non-
functional requirements are not satisfied, changes must be
made to the design to incorporate those requirements. The
software engineers must check the results of the various
evaluations and identify what the flaws that exists in the
design. Usually the evaluations offer enough hints about
where the rectification is required in design by giving low
scores while making the evaluation.

 The evaluation of the NFRs is performed with
respect to a certain context usually, for example, a GUI
system or database or hardware. If the NFR is not satisfied,
we can change the context of the design or sometimes it may
lead to a major change in complete architecture. In this paper
we have discussed about the architectural transformation.
We tried to create a new version each time which fulfils the
functionality, but the change in values for the properties.

The consequence that is faced by the architecture
transformations is, most of the time the transformations
affect properties of the architecture, some may be positive
and some may be negative for the properties. For example
some of the strategy pattern which is used for design
increases the flexibility in class with respect to the behaviour.
The performance may be reduced since one class object
invokes other objects of strategy instance which defines the
behaviour. Thou in this case a positive effect have been
increased by a minor impact on the performance.

In this paper we have discussed about the five
categories of architectural transformation, which has been
organized in the decreasing impact in software architecture.
The steps that are carried out are:

1.Impose the architectural style.
2.Impose the architectural pattern.
3.Impose a design pattern.
4.NFRs to the functionality conversion.
5.Requirements distribution.

A single transformation is not possible to solve all
the NFR, at least two or more transformation is required.
Each category has been discussed in below in more detail.

Imposing architectural style
Shaw and Garlan have presented many

architectural styles that enhance the system for certain NFRs
but are less supportive for the other NFRs of styles like the
layered style, generate better flexibility by adding several
layers of abstraction, but usually end up by decreasing the
performance of in resulting system. Every architectural style
is best suited to a particular set of non-functional
requirements as a system property. Since such a
transformation completely changes the structure of a system,
the style must be chosen carefully.

It is usually not possible to merge multiple
architecture styles together, but different styles can be
applied at different levels of the system, for example, at the
system level and at the sub system level. As long as the
subsystem that has a style different from the system and

functions correctly at its level, it is applicable to use another
architectural style. In our approach, we have tried to
differentiate explicitly the components that provide the
functional requirements and the system structure which
decides the NFRs.

In real world scenarios, such an explicit
differentiation cannot be made since various parts of the
former may influence several system NFR properties like
robustness and reliability. An architecture style model of
simple function is shown in figure 7.

An assessment of efficiency and the performance of
the system will conclude that the design is not adequate since
all the Outputs have to check the state of all the Inputs.
Deviations may be added as a method of checking only those
Inputs that have been changed to a value other than which is
in the acceptable range. Every Input must create a Deviation
and store them in a common place. Now Outputs must only
check that particular place and the functions accordingly to
investigate the behaviour. The solution is identified by using
the Blackboard architectural style as shown in figure 7.

Figure 7. Black board style architecture for fire alarm system

Imposing architectural pattern
The next category in transformation is that of

applying an architectural pattern. A pattern is different from a
style; this pattern affects a larger part of the architecture.
Certain rules are followed in the architectural pattern such
that they specify how the system will deal with an aspect of
the functionality such as persistence or concurrency.

The fire alarm system in the SmartHome
application could serve as an example for the concurrency
behaviour. The functional view of a system as shown in
figure 1 assumes that the reading of the inputs and produces
an output takes concurrently with the help of a thin pre-
emptive thread and these solutions can be checked for the
reliability and efficiency. These threads are error-prone,
when accessing the shared data these pre emptive threads
may cause the racing conditions. Therefore to solve this
problem of reliability, we have used a pattern called as
periodic object, it provides appropriate granule of
concurrency. This periodic object can be defined as abstract
object which is activated with the help of scheduler object
tick method. The subclasses deploy the tick method of their
own that defines the slicing and execution of active object
periodically. The slicing of thickness defines the degree of
granularity and concurrency. The result of all Tick methods
must be returning a value within the predefined time. Design
pattern and design rule that has been given in the example
influences the entire architecture because of the

Assessing The Software Architecture Toward Evolution

5

.

effectiveness of outputs are determined by the inputs. We
have induced an algorithm in the figure 8 which handles the
longest worst case of response times.

Figure 8. A modified model reading sensor model

Such a high-level transformation of the algorithm
causes coupling among the Inputs, it needs simultaneous
operation where the data is evaluated, the same time when
another physical sensor is operating in the alarm system.
Therefore, the entire architecture is affected. Applying the
same mathematical models previously, however, the new
worst case response time is.

150*(2+2+8) ms = 2.3s

Imposing Design pattern
This transformation is a far safer one, in the fact it is

less dramatic. For example, an abstract factory pattern can be
introduced to abstract the process of initialization of its
clients. The abstract factory pattern increases the
maintenance, flexibility and the extensibility of system,
because it encapsulates the type of actual classes that are
instantiated. But it will decrease the efficiency by creating
the new instances because of the additional computations
which reduces the performance and the prediction. Like
imposing the architectural style which needs a complete
reorganizing of the architecture is not needed in the imposing
of design pattern because it deals on the basis of subsystem.
Hence forth limited number classes will be alone affected. In
the fire alarm of SmartHome, the evaluation of change in
scenario results that the inputs that has to be given to the
hardware, those hardware parts needs some changes for the
NFR maintainability. The behaviour is defined by the
standard of the actual sensor's used in the application, hence
we have used a pattern called as point pattern here the input
device is separated from the input point as show in figure 9.

NFRs to functionality conversion
NFRs can be converted to functional requirements

and this is the next transformation that we have discussed.
This extends the functionality of the architecture (not in the
problem domain) but helps to identify a NFR. Exception
handling is technique which helps to add functionalities to
the components in order to increase its fault-tolerance.

Figure 9. Improve the flexibility of system by point
pattern

In our example of the SmartHome, alarm system for
fire, self-monitoring and availability can be defined as NFRs.

In some cases faults has to be handled using the
redundancy of the hardware, whereas other NFRs must be
indicated to the system maintenance personality. Similar to
alarm requirements, rest of the requirements can also be
identified by transforming to the functional requirements.
We have shown the architecture of the self monitoring in the
figure 10.

Figure 10. Self monitoring transformation to functional
behaviour

Requirement distribution
This requirement distribution type of

transformation takes care of fulfilling NFRs using the divide-
and-conquer principle: an NFR which exists at system level
is divided and assigned to subsystems or subcomponents that
together form the system. Hence, an NFR X is divided into n
different components that together make up the entire
architecture, by assigning an NFR xi for each component ci
hence X=x + ... +x. 1 n

Another approach is to distribute the requirements
by dividing an NFR into many function related NFRs. For
instance, in the distributed systems, the fault-tolerance can
further be subdivided into fault-tolerant computation and

Assessing The Software Architecture Toward Evolution

6

.

also fault-tolerant communication.
The alarm system for fire which is present in the

SmartHome is implemented as distributed systems, where a
CPU-based system controls the entire building. Systems of
similar type communicate with each other and if an alarm is
given by one system, all other systems indicate the same.
Such an indication can be achieved by having a copy on the
blackboard style available in all the subsystems. This way of
distribution must be done using the softwares that are used
for communication at the lower level layer of software
operation, which assures the consistent copies of blackboard
distributed in all the systems. The diagram of this
architecture is shown in figure 11.

Figure 11. Distributed aspects in fire alarm system

Hence, the NFR which mentions how well the
alarm system must deal problem related to communication is
assigned to soft ware's that are used for communication,
which helps in a distributing a system level requirement to a
component.

RESULTS AND DISCUSSIONS
We have implemented the evaluation and

transformation procedures using UML2.4.1, we found a
drastic change in the identification of NFRs which have
supported our research work. We have plotted the
comparison results of the NFRs identification with an
existing method in the figure 11. After the transformation of
the architecture we have identified the betterment of NFRs.
In the SmartHome application, which consists of many
components, such as sensors, alarms etc. The NFRs have
been identified with respect to those components. We have
shown around seven NFRs in the figure 12.

Figure 12. Comparison of NFR identification using

evaluation and the transformation
Our work is related to several others in research

activities. Several design methodologies have already
defined by many researchers. For evaluating the architecture
we have several methods such as SAAM, ATAM etc., which
all concentrates on the evaluation of NFRs based on the
scenarios, where we have additionally used mathematical
modelling, simulation, and reasoning. Research on the
metrics were implemented on the systems after the
development, whereas we have worked in the early stage of
the design and deployed using the design. Several research
communities work on the NFRs using object oriented design
methodologies which concentrate on reusability and
maintenance. Real time system design has also been
concentrated towards the identification of NFR's. The
method which we have proposed in this paper is different,
and we have concentrated on the realistic situation and
addressed the system NFRs which needs to be balanced. In
our method we have used some transformations to improve
the architecture and find the NFRs; the transformation
doesn't mean the conversion of architecture. We have tried to
verify the transformations with the help of UML 4.2.1 and we
have compared with one of the normal method to identify the
NFRs.

CONCLUSION
The architectural design method presented here

directly handles non-functional requirements put on the
architecture. We have also identified that the capability of
fulfilling a few of the non-functional requirements is largely
dependent on the architecture that is being used in the first
place.

We begin by the first iteration in which only the
functional requirements are taken into account. The next
iterations focus on evaluating the architecture for the NFRs
and transforming it to better fulfilment. NFRs may be
evaluated using scenario based evaluation, simulation
methods, mathematical modelling and reasoning whereas
the transformations have been done by

1.Impose the architectural style.
2.Impose the architectural pattern.
3.Impose a design pattern.
4.NFRs to the functionality conversion.
5.Requirements distribution.

We implemented the method on the SmartHome
application. The experimented results are shown in the
section 7, which has carried out an appreciable support for
the engineers and researchers who work on the architectural
design.

REFERENCES
I.Pratima Singh and Anil Kumar Tripathi, Issues in Testing of
Software with NFR, International Journal of Software
Engineering & Applications (IJSEA), Vol.3, No.4, July 2012
II.Ameller, D,et.al., Dealing with Non-Functional
Requirements in Model-Driven Development , Engineering
Conference (RE),ieeexplore.ieee.org, 2010.

Assessing The Software Architecture Toward Evolution

7

.

III.Mehta. R, Tomás Ruiz-López, L.Chung and M. Noguera,
Selecting among alternatives using dependencies: an NFR
approach, SAC 13,Proceedings of the 28th Annual ACM
Symposium on Applied Computing Pages 1292-1297,2013.
IV.Yi Liu ,Zhiyi Ma , Rui Qiu, Hongjie Chen and Weizhong
Shao, An Approach to Integrating Non-functional
Requirements into UML Design Models Based on NFR-
Specific Patterns, Quality Software (QSIC), 12th
International Conference, IEEExplore digital library, 2012.
V.Filieri.A. et.al, A formal approach to adaptive software:
continuous assurance of non-functional
requirements,Formal Aspects of Computing,Springer-,
2012.
VI.Surpass Series Products, Siemens Information and
Comm. Network,www.siemens.com/surpass, 2007.
VII.Cortellessa. V., P. Pierini, and D. Rossi, On the
Adequacy of UML-RT for Performance Validation of an
SDH Telecommunication System, Proc. Int'l Symp. Object-
Oriented Real-Time Distributed Computing, 2005.
VIII.Umar. M, M. N. Ahmedkhan, A Framework to Separate
Non-Functional Requirements for System Maintainability,
Kuwait journal of Science and Engineering, 39 (1B) pp.211 -
231, 2012.
IX.Romina Ermo, Vittorio Cortellessa, Alfonso Pierantonio,
Michele Tucci., “Performance Driven architectural
refactoring through bidirectional model Transformation”,
ACM SIGSOFT Conference on Quality of Software
Architectures, QoSA2012.
X.Aroul canessane. R, S. Srinivasan, A Framework for
Analysing the System Quality, ieeexplore.ieee.org, ICCPCT
2013.
XI.Krogstie. J, Sindre. G, and Jørgensen. H, “Process
Models Representing Knowledge for Action: A Revised
Quality Framework,” European J. Information Systems, vol.
15, no. 1, pp. 91-102, 2006.
XII.Aroul canessane. R, S. Srinivasan, UML Model
Transformation for a Product Line Design, International
Journal of Engineering & Technology (IJET), 2013.
XIII.Aldrich. J, “Using Types to Enforce Architectural
Structure,” Proc. Working IEEE/Int'l Federation for
Information Processing (IFIP) Conf.Software Architecture,
pp. 211-220, 2008.
XIV.Casamayor. A, D Godoy, M Campo, Identification of
non-functional requirements in textual specifications: A
semi-supervised learning approach, Information and
Software Technology, Elsevier 2010.

Assessing The Software Architecture Toward Evolution

R. AROUL CANESSANE
Research Scholar, Sathyabama University, Chennai

8

Publish Research Article
International Level Multidisciplinary Research Journal

For All Subjects

Dear Sir/Mam,
 We invite unpublished research paper.Summary of Research
Project,Theses,Books and Books Review of publication,you will be pleased to
know that our journals are

Associated and Indexed,India

?

?OPEN J-GATE
International Scientific Journal Consortium Scientific

Associated and Indexed,USA

?Google Scholar
?EBSCO
?DOAJ
?Index Copernicus
?Publication Index
?Academic Journal Database
?Contemporary Research Index
?Academic Paper Databse
?Digital Journals Database
?Current Index to Scholarly Journals
?Elite Scientific Journal Archive
?Directory Of Academic Resources
?Scholar Journal Index
?Recent Science Index
?Scientific Resources Database

Indian Streams Research Journal
 258/34 Raviwar Peth Solapur-413005,Maharashtra

Contact-9595359435
E-Mail-ayisrj@yahoo.in/ayisrj2011@gmail.com

Website : www.isrj.net

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

