Vol 3 Issue 11 Dec 2013

ISSN No : 2230-7850

International Multidisciplinary Research Journal

Indían Streams Research Journal

Executive Editor Ashok Yakkaldevi Editor-in-Chief H.N.Jagtap

Welcome to ISRJ

RNI MAHMUL/2011/38595

University,Kolhapur

Govind P. Shinde

Indapur, Pune

ISSN No.2230-7850

Indian Streams Research Journal is a multidisciplinary research journal, published monthly in English, Hindi & Marathi Language. All research papers submitted to the journal will be double - blind peer reviewed referred by members of the editorial board. Readers will include investigator in universities, research institutes government and industry with research interest in the general subjects.

International Advisory Board

Flávio de São Pedro Filho	Mohammad Hailat	Hasan Baktir
Federal University of Rondonia, Brazil	Dept. of Mathematical Sciences,	English Languag
•	University of South Carolina Aiken	Department, Ka
Kamani Perera		
Regional Center For Strategic Studies, Sr.	i Abdullah Sabbagh	Ghayoor Abbas
Lanka	Engineering Studies, Sydney	Dept of Chemist Management Sc
Janaki Sinnasamy	Catalina Neculai	C
Librarian, University of Malaya	University of Coventry, UK	Anna Maria Cor AL. I. Cuza Uni
Romona Mihaila	Ecaterina Patrascu	
Spiru Haret University, Romania	Spiru Haret University, Bucharest	Horia Patrascu Spiru Haret Uni
Delia Serbescu	Loredana Bosca	Bucharest,Roma
Spiru Haret University, Bucharest,	Spiru Haret University, Romania	
Romania		Ilie Pintea,
	Fabricio Moraes de Almeida	Spiru Haret Uni
Anurag Misra	Federal University of Rondonia, Brazil	
DBS College, Kanpur		Xiaohua Yang
	George - Calin SERITAN	PhD, USA
Titus PopPhD, Partium Christian	Faculty of Philosophy and Socio-Political	
University, Oradea, Romania	Sciences Al. I. Cuza University, Iasi	
	Editorial Board	
Pratap Vyamktrao Naikwade	Iresh Swami	Rajendra Shenda
ASP College Devrukh, Ratnagiri, MS India	a Ex - VC. Solapur University, Solapur	Director, B.C.U. Solapur
R. R. Patil	N.S. Dhavgude	Solupui
Head Geology Department Solapur	Ex. Prin. Davanand College, Solapur	R. R. Yalikar
University, Solapur		Director Managr
	Narendra Kadu	e
Rama Bhosale	Jt. Director Higher Education, Pune	Umesh Rajderka
Prin. and Jt. Director Higher Education,		Head Humanitie
Panvel	K. M. Bhandarkar	YCMOU,Nashik
	Praful Patel College of Education, Gondia	
Salve R. N.		S. R. Pandya
Department of Sociology, Shivaji	Sonal Singh	Head Education

Sonal Singh Vikram University, Ujjain

G. P. Patankar Alka Darshan Shrivastava S. D. M. Degree College, Honavar, Karnataka Shaskiya Snatkottar Mahavidyalaya, Dhar

Maj. S. Bakhtiar Choudhary Director, Hyderabad AP India.

S.Parvathi Devi

ge and Literature iyseri

Chotana try, Lahore University of ciences[PK]

nstantinovici iversity, Romania

iversity, ania

iversity, Romania

.....More

ge .D. Solapur University,

ment Institute, Solapur

ar es & Social Science k

Head Education Dept. Mumbai University, Mumbai

Rahul Shriram Sudke Devi Ahilya Vishwavidyalaya, Indore

S.KANNAN

Awadhesh Kumar Shirotriya Secretary, Play India Play, Meerut (U.P.)

Bharati Vidyapeeth School of Distance

Education Center, Navi Mumbai

Chakane Sanjay Dnyaneshwar

Arts, Science & Commerce College,

Ph.D.-University of Allahabad

Sonal Singh, Vikram University, Ujjain Annamalai University, TN

Satish Kumar Kalhotra Maulana Azad National Urdu University

Address:-Ashok Yakkaldevi 258/34, Raviwar Peth, Solapur - 413 005 Maharashtra, India Cell : 9595 359 435, Ph No: 02172372010 Email: ayisrj@yahoo.in Website: www.isrj.net

Indian Streams Research Journal Volume-3, Issue-11, Dec-2013 ISSN 2230-7850

STRUCTURAL PROPERTIES OF ZINC AND ALUMINUM SUBSTITUTED CUPPER FERRITE PREPARED BY CERAMIC METHOD

Available online at www.isrj.net

N. G. Nisal, S. T. Alone², V. B. Kawade³, G. K Bichile⁴

¹Department of Physics, Deogiri College, Aurangabad (MS) India ²Department of Physics, R. S. Art's ,Sci. & Comm. College, Pathri, Aurangabad (MS) India ³Department of Physics, L. L. D. Mahila Mahavidyalaya, Parali(V), Beed(MS) India ⁴ Department of Physics, Dr. B. A. M. University, Aurangabad (MS) India

Abs tract:-*The samples of Cu*_{0.6}*Zn*_{0.4}*AlxFe*_{2.x}*O ferrite system with (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were prepared* by the usual doubled sintering conventional ceramic technique. The powder samples were annealed at 900C for 24 hours and the samples were pressed into pellets of 10mm diameter are sintered at 1100C for 36 hours. The samples were studied by means of X-ray diffraction. The X-ray analysis showed that all the samples had single-phase cubic spinel structure. The variation of lattice constant with C_{1}^{*} , $Zn^{2^{+}}$ and Al^{+} concentration deviates from Vegard's law. The cation distribution estimated from X-ray intensity ratio calculations suggest that, Zn^{2^+} ions occupies tetrahedral (A) site and Al^{\dagger} , Cu^{2^+} ions at octahedral [B] sites..

Keyw ords:Ferrite, Ceramic Method, Lattice constant.

1.INTRODUCTION

Crystalline Cu-Zn spinal ferrites have been investigated extensively due to their potential application in non resonant devices, radio frequency circuits, high quality filters, rod antennas, transformer cores, read and write heads for high speed digital tapes and operating devices [1]. Studies on structural, electrical and magnetic properties of Cu-Zn ferrite been reported by many workers [2-6]. The variation of magnetization and Mossbaur study of Cu-Zn ferrite with different Zn concentration has been carried out recently by Rezelescu [7], Cuciurenav [8] related Curie point to cation distribution in Cu-Zn ferrites Evans et.al.[9] have studied magnetic properties of Cu-Zn ferrites by Mossbaur spectroscopy. From these studies on Cu-Zn ferrites, the ferrite having the composition Cu $_{0.6}$ Zn $_{0.4}$ Fe $_{2-x}$ O₄have been taken as a base for investigation for the present work, as it shows a maximum value of magnetization for Cu_{1-x}ZnFeQ 4 system.

The aim of the present paper is to look into the effect of substitution nonmagnetic Al ³⁺ on the structural and magnetic properties of Cu_{0.6}Zn_{0.4}Al^xFe_{2.x}O₄system with (x= 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) prepared by conventional double sintering ceramic method. The structural studies and phase purity of the samples have been investigated using powdered X-ray diffraction data. The unit cell parameters were determined and the respective X-ray densities were calculated for all the samples of the present system. The intensities of Bragg peaks have been used to determine the most probable cation distribution.

2. EXPERIMENTAL:

The polycrystalline samples of Al ³⁺ substituted

 $Cu_{0.6}Zn_{0.4}Al_x^Fe_{2-x}O_4$ system (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were prepared by conventional ceramic technique. The starting materials were Fe0,₃CuO, ZnO, AlO₂ supplied by E-Merck .The oxides were mixed thoroughly in stoichiometric proportions to get the desired composition and wet ground using acetone as the medium. The mixture was dried and pressed it to form pallets. The pellets were fired at 900° for 24 hours and cooled slowly to room temperature. The samples were again finely powdered and pressed into pellets of 10mm diameter by applying a pressure of 5 tones per sq. inch. The pellets were finally sintered at 1100°C, for 36 hours and were cooled to room temperature in air using the temperature controlled carbolyte furnace. The pallets were found to be crack free, flat and hard.

The x-ray powder diffraction data were recorded at room temperature using Cu-K radiation on Philips X-ray diffractometer (model PW 3710). The x-ray diffraction patterns exhibit sharp Bragg peaks corresponding to single phase spinel structure for all the samples and which thus confirmed the phase purity for all the samples prepared. The x-ray diffraction data were recorded between the 2 range 0° to 80° with a rate 0.50/ minute at room temperature. The lattice constants were determined and their respective x- ray densities were calculated.

3. RESULTS AND DISCUSSIONS: XRD analysis:

The room temperature X-ray diffraction patterns showed sharp lines corresponding to single phase structure for all the samples. Fig (1) represent the X-ray diffractograms for x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 samples. The values of lattice parameter are determined from X-ray

1

N. G. Nisal, S. T. Alone, V. B. Kawade, G. K Bichile, "STRUCTURAL PROPERTIES OF ZINC AND ALUMINUM SUBSTITUTED CUPPER FERRITE PREPARED BY CERAMIC METHOD" Indian Streams Research Journal Vol-3, Issue-11 (Dec 2013): Online & Print Structural Properties Of Zinc And Aluminum Substituted

data with an accuracy of $\pm 0.002 \text{ A}^{\circ}$ and are summarized in Table 1. The lattice parameter decreases linearly with increase in Al $^{3+}$ concentration as shown in Fig 2 This variation of lattice parameter 'a' with 'x' can be explained on the basis of ionic radii of substituted ions [10]. The observed decrease in 'a' with x is due to the replacement of large ionic crystal radius of Fe^{3+} (0.64A°) by smaller A1³⁺(0.50A°). The X-ray density 'd' for all the samples was calculated using the ion [11].

$$d_x = ZM / NV$$
 (1)

where, Z is the number of molecules per unit cell (Z=8), M is the molecular weight, N is the Avogadro's number and V is the volume of unit cell $(V^{=3} a)$. The values of X-ray density 'd' represented in table 1 shows a linear decrease in 'dx' with increase in Al³⁺ concentration. This is due to decrease in mass overtakes the decrease in volume of the unit cell. The Table 1 also represents the percent porosity 'p%' for the system. The cation distribution in spinel ferrites can be obtained from the analysis of X-ray diffraction [12], Mossbauer effect [13] and Magnetization [14]. In the present work the cation distribution is estimated from magnetization (300 K) and X-ray intensity analysis. In order to determine the cation distribution, X-ray intensity calculations were carried out and compared with observed data. The ratio of intensities of reflections due to the planes (220) and (440) has been chosen as a criterion to determine the cation distribution. The X-ray intensities were determined according to the formula suggested by Burger [15]

$$I_{hkl} = \left| F_{hkl} \right|^2 P.L_p \tag{2}$$

where I-is the relative intensity, F-is the multiplicity factor for plane hkl and Lis the Lorentz polarization factor.

$$L_p = \frac{1 = \cos^2 2}{\sin^2 = \cos =}$$
(3)

The formulae for structure factors for the planes (hkl) given by Furahashi et.al [16] have been used. The formulae for the multiplicity factor and Lorentz polarization factors are taken from literature [17]. In the present system $Cu_{0.6}Zn_{0.4}AlFe_{2-x}0_4$ of ferrites variation of Al^{3+} , concentration 'x' results in replacement of xFe $^{3+}$ ions by xAI $^{3+}$ ions. In accordance with the site preference energies, Zn²⁺ occupy (A) site Cu^{2+} , Al^{3+} occupy [B]- site and Fe³⁺ ions shows no definite site preference [18]. The distribution of the divalent and trivalent cations amongst tetrahedral (A) and octahedral [B] sites in the as Cu $_{0.6}$ Zn $_{0.4}$ AlFe $_{2-x}$ 0₄determined from the intensity ratio of X-ray diffraction lines. The results of X-ray intensity calculation for various possible models have been tried and were compared with observed intensity ratios. The cation distribution estimated from the X-ray diffraction

concentration of Fe³⁺ ions remains unaffected by the substitution of Al^{+} in Cu_{0.6}Zn_{0.4}AlFe _{2-x}0₄

The ionic radii r and r are the ionic radii of tetrahedral (A) and octahedral [B] site ions respectively. These r_A and r_B are used to calculate the theoretical values of lattice parameter ath as

$$a_{th} = \frac{8}{3\sqrt{3}} = (r_A = R_0) = \sqrt{3} \cdot (r_B = R_0) = (4)$$

The particle size 't' is given by

$$t = \frac{0.9}{B\cos a_{B}}$$
 with $B^{2} = B_{a}^{2} = B_{b}^{2}$ (5)

Where, t - is diameter of crystal particle, λ - is wavelength of the X-ray radiation, θ - is Bragg's angle, B - is measure of broadening of diffraction due to size effect B and B_bare full width at half maxima of the XRD line of the sample and standard specimen respectively.

4. CONCLUSION

Conventional ceramics method plays an important role in governing the properties of the ferrite system. The samples show single phase cubic structure. The X ray patterns were used to determined lattice parameter and structure factors were used to develop the cation distribution for these systems. The results obtained are in good agreement with theoretical results obtained.

5. ACKNOWLEDGEMENT

One of the authors (N. G. Nisal) is thankful to USIC, Shivaji University, Kolhapur for providing X-ray diffractometer charts.

REFERENCES:

[0 Pradhan S K, Bid S, Gateshki M & Petkov V, Materials Chem. and Physics 93, (2005),224

[20 R.G. Kulkarni and V.U. Patil, J. Solid State Comm. 31,(1979), 551

[30 R.G. Kulkarni and V.U. Patil J. Mater. Sci. 17, (1982), 843,

[40 S. R. Sawant and R. N. Patil Bull. Mater. Sci. 4, (1982), 11.

[50 R. Sawant and R. N. Patil Sol. Stat. Comm. 40, 391, 1981.

[60 S. A. Olfa., 0. M. Hemeda and M. A. Amer, Ashin J. Phys. 3, 113, 1993.

[**N**.]Reziescu and E. Cueiureanu C. R. Acad. Sci. (France) B 269, 19, 952, 1969.

[8N. Reziescu, C. R. Acad. Sci. (France) B 270, 18,1134,1970.

intensity ratio calculation are summarized in Table 2 showing the occupancy of A1³⁺, Cu²⁺ ions at octahedral [B] site, where as Zn ³⁺ ions occupy tetrahedral site. A-site

[\$.]J. Evans and S. Hafner, J. Phys. Chem. Solids. 29, 1573, 1968.

[1 E.W. Gorter, Philips Res. Rep. 9,295,1954.

2

Structural Properties Of Zinc And Aluminum Substituted

[1 **E**.D].Cullity, Elements of x-ray diffraction (Addison-Wesley Reading Man.)1959.

[1 **(2**, **()***:* Whinfrey, D. W. Eckort and A. Tauber, J. Am. Chem.Sci. 82,2695,1960.

[1 St B harati, M.G. Gupta, A.P.B. Sinha and S.K. Date Indian J. pure Appi .Phys. 18, 7 4 7 1 9 8 0 .

[**1 Sł. ł**]. Sawant and R. N. Patil, Indian J. Pure Appl. Phys. 21, 145,1983.

[1 M. G. Burger, Crystal structure Analysis John Wiley New York 1960.

[1 H6. Fjurahashi, M. Inkadi, S. Naka, J. Inorg. Nucl. Chem. ,35,3003, 1973.

[**1 B**. **D**. Cullity, Elements of X-ray diffraction (Addison-Wesly Reading Man.) 1959.

[**1 B B**. Goodenough and A. L. Loeb, Phys. Rev. 98, 391, 1953.

Fig 2: Variation of observed and calculated lattice constant with Al³⁺ concentration of the system Cu_{0.6}Zn_{0.4}AlFe _{2-x}O₄(x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0)

Table 1: Lattice constant 'a', X-ray density 'd' and porosity P% for the Cu_{0.6}Zn_{0.4}AlFe _{2-x}O₄system

x	Lattice Constant a (A°)		X-ray density d x (gm/cm ³)	Porosity p%	Particle size t (A ⁰)
	a (Obs) (A°)	a _{th} (Cal.) (A°)			
0.0	8.403	8.372	5.37	14.7	213
0.2	8.374	8.334	5.30	13.8	192
0.4	8.333	8.297	5.24	17.3	439
0.6	8.306	8.259	5.16	17.9	358
0.8	8.286	8.222	5.06	21.1	185
1.0	8.246	8.185	5.00	32.0	185

Table 2: Cation distribution and comparison of X-ray intensity ratios for the Cu_{0.6}Zn_{0.4}AlFe _{2-x}O₄system.

(x)	A-site	B-site	I(400)/I(440)		I(400)/I(422)		I(422)/I(440)	
			Obs.	Cal.	Obs.	Cal.	Obs.	Cal.
0.0	(Zn _{0.4} Fe _{0.6})	[Al _{0.0} Cu _{0.6} Fe _{1.4}]	0.44	0.43	1.92	1.96	0.23	0.22
0.2	(Zn _{0.4} Fe _{0.6})	[Al _{0.2} Cu _{0.6} Fe _{1.2}]	0.42	0.56	1.75	1.33	0.24	0.41
0.4	(Zn _{0.4} Fe _{0.6})	[Al _{0.4} Cu _{0.6} Fe _{1.0}]	0.39	0.37	1.56	1.26	0.25	0.29
0.6	(Zn _{0.4} Fe _{0.6})	[Al _{0.6} Cu _{0.6} Fe _{0.8}]	0.38	0.42	1.41	1.37	0.27	0.30
0.8	(Zn _{0.4} Fe _{0.6})	[Al _{0.8} Cu _{0.6} Fe _{0.6}]	0.33	0.59	1.25	1.61	0.26	0.36
1.0	(Zn _{0.4} Fe _{0.6})	[Al _{1.0} Cu _{0.6} Fe _{0.4}]	0.31	0.45	1.13	1.35	0.27	0.33

3

Publish Research Article International Level Multidisciplinary Research Journal For All Subjects

Dear Sir/Mam,

We invite unpublished Research Paper, Summary of Research Project, Theses, Books and Book Review for publication, you will be pleased to know that our journals are

Associated and Indexed, India

- International Scientific Journal Consortium
- ★ OPEN J-GATE

Associated and Indexed, USA

- *Google Scholar
- ***EBSCO**
- *DOAJ
- ***Index** Copernicus
- *****Publication Index
- *Academic Journal Database
- Contemporary Research Index
- *Academic Paper Databse
- ★Digital Journals Database
- *Current Index to Scholarly Journals
- ★ Elite Scientific Journal Archive
- *Directory Of Academic Resources
- *Scholar Journal Index
- **★**Recent Science Index
- Scientific Resources Database

Directory Of Research Journal Indexing

Indian Streams Research Journal 258/34 Raviwar Peth Solapur-413005, Maharashtra Contact-9595359435 E-Mail-ayisrj@yahoo.in/ayisrj2011@gmail.com Website : www.isrj.net