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Abstract : 

The purpose of this paper is to extend the classical   Marchi – Fasulo Transformation of 
Generalised functions by using orthonormal series expansion of generalized  function. 
 
INTRODUCTION : - 

Certain orthonormal series expansions of various generalized functions lead to the so-
called finite integral transformation. Zemanian  A.H.(1968 a,b ) has extended finite Laplace, 
Hermite, Jacobi, & finite Hankel transformation of gereralized function by using orthonormal 
series expansions of  generalized functions. 

In this paper we define the type of gereralized functions to which Finite Marchi – Fasulo 
Transformation has been applied. The Finite Marchi – Fasulo Transformation of a function f ( z ) 
defined on the integral (- � , � ) is defined as , 
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For which the inversion is given by , 
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NOTATION & TERMINOLOGY :-  
In this work Z is real one dimensional variable restricted to some open integral I = ( -h , h 

) and n will be a non-negative integer. The conventional or generalized derivative of a function ! 
is denoted by D! , and  �"# derivative of  ! is denoted by $
 ! .  
 
The Testing Function space % and its Dual  %& . 
       Consider the functions '
��� defined on I as ,     '
���  = 

()�*�
+,)

   

 
Where     �
 ���    =   �
 cos � �
�� − �
  sin  � �
�� 
 
Where   �
 are the positive roots of the equation, 
 

����� − ����� � -./����� + ����� �� ����� sin� 2��� + ����� − �����/1���� = 0 
 
Also let η denote the differential operator         η  =   $� 
 
The functions '
 happen to be eigen functions of η 
 

i.e.   3 '
 = 4
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 = 
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The  '
 compries  �
  orthonormal set , i. e  
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Where the series is understood to converge pointwise on I. The notation < f , '
> denotes the 
inner product defined by , 
 

< �, '
�G, �� > =  �  
	


	
���� '
 �G, ����. 

 
 We use this classical facts to construct a using function space β. Whose dual consists of 
generalized functions which can be expanded in generalized sense in to series like   β  consists of 
all function I(t , z) that possess the following property. 
 



Indian Streams Research Journal                                                                                  
ISSN 2230-7850       
Impact Factor : 1.7604(UIF)                                                                                                        
Volume-3, Issue- 2, March -2013                 Available online at www. isrj.org 
_____________________________________________________________________________________ 

    

 

 

3 

 

i) I ( t , z )  is defined complex valued & smooth on I. 
ii)  For each nonnegative integer k. 

�J�I�  ≜  �E�3J I�  ≜   [ �|3J I�G , ��|��G �� ]�
� < ∞  

	


	
 

 iii)  For each n & k .   ( 3JI ,  '
) =  ( I , 3J '
) 
 
Lemma I  :-  β is testing function space .  
Proof     Here    { �J }JDE C  is a multinorm on β. Hence each  �J is a serinorm & in addition �E is 
norm on β. We equip β with the topology generated by  { �J }JDE C   and this makes β a countably  
multinormed space. Under this formulation β turns out to be   testing function space.  
 
Lemma II : - Every  '
��� is a member of  β. 
 
                   Since                3J   '
    =     4
 J  '
   we get  
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Also for   n ≠ m, 
 
 <  3J  '
 ,   '; > = <  4
 J  '
 , '
 > = < '
 , 4
 J  '
 > = < '
 , 3J  '
 >                                      
 
Since 4
 are real, hence   '
  ∈ � ∀
 .   
 
The set of all continuous linear functionals on �  is denoted by  �′ . Here member of  �′  are  
called  generalized function on I . 
The generalized function space  3 ′  

                Since the testing function space �  is complete so also �′  according to (theorem 1.8.3 Zemanian 
1968 ) We define a generalized differential operator   3& on  �′  through the relation  

 
              < f ,  3I > =  < f , 3IU > =   < 3V ′  f IU >  =  < 3V ′  f I > 
 
 3V ′  is denoted by the differential expression obtained by reversing  the order in which the 
differentiation and multiplication by  I occur in  3. Thus  3 =   3V ′ is defined as gereralized 
differential operator on  �′  through the equation  < 3 , fI > =   < f   3I >  f  ∈ �′ ,   I  ∈ � . 
Since 3 is continuous linear mapping of  � in to itself . It is also continuous linear mapping of �′  
into ′ . 
Some other properties of  �′. 
i)D(I) is obviously a sub space of � and convergence in D (I) implies convergence in  �. 
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The restriction of any  f  ∈ �′  to D (I) is a member of  $′(I) and convergence in �′  implies 
convergence in $′(I). 
ii)  Since 3 is continuous linear mapping from �′  in to �′. It follows that  3J f  ∈ �′  whenever f 
is regular generalized function in  �′ . 
i) Since D (I)  is a subset of  ∈ (I) and since D(I) is dense in ∈ (I)  � is also dense in ∈ (I). 

Hence  ∈ ′(I) is subspace of  �′.  
The member of �′ lead to gereralised Marchi Fasulo transformation M F defined by  
 
                     M F f  =  F (n)  =  < f , '
  >  f  ∈  �′        n = 0 ,1 , 2 ………………………. 
 
Thus the continuous and linear mapping MF maps  f ∈ �′  into a function F (n). 
The inverse (generalized ) Marchi - Fasulo transformation  W�
� is defined by the series 
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