### THE COMPLEMENTARY DOMINATING ENERGY OF A GRAPH



Kulli [15]. For

details

to [10].

details in this concept see

[4, 12, 16]. For more

theory of graphs we refer

The concept of energy of

a graph was introduced

by I. Gutman [7] in the

year 1978. Let G be a

graph with n vertices and

*m* edges and let  $A = (a_{ii})$ 

be the adjacency matrix

eigenvalues  $\lambda_1, \lambda_2, ..., \lambda_n$  of

increasing order, are the

eigenvalues of the graph

G. As A is real symmetric,

the eigenvalues of G are

real with sum equal to

zero. The energy E(G) of

G is defined to be the

sum of the absolute

graph.

assumed in non

The

the

of

Α.

in domination

more

K. B. Murthy<sup>1</sup>, Puttaswamy<sup>2</sup> and Ahmed Mohammed Naji<sup>3</sup>

#### INTRODUCTION

In this paper, we consider a simple graph G(V,E)without isolated vertex. We denoted by *n* and *m* to the number of its vertices and edges, respectively. We refer the reader to [9] for more graph theoretical analogist not defined here. A subset D of vertices set V of G is called a dominating set of G if every vertex  $v \in V - D$  is adjacent to some vertex in D. The domination number  $\gamma(G)$  of G is the minimum cardinality of a minimal dominating set in G. A dominating set  $D^1$  contained V –D is called in а complementary (an inverse) dominating set of G with respect to D. The smallest cardinality among all dominating sets in V -D is

#### Abstract

For a graph *G*, let  $D \subseteq V(G)$  be a dominating set of *G*. If V -D contains a dominating set  $D^1$  with respect to *D*, then  $D^1$  is called a complementary (inverse) dominating set of *G*. The smallest cardinality among all complementary dominating sets of *G* is called the complementary domination number of *G* and it is denoted by  $\gamma_c(G)$ . In this paper, we study complementary dominating energy  $E_{CD}(G)$  of a graph *G*. We are compute complementary dominating energies of some standard and well-known families of graphs. Upper and lower bounds for  $E_{CD}(G)$  are established.

#### Mathematics Subject Classification: 05C50, 05C69.

**Keywords:** dominating set, complementary domination number, complementary dominating matrix, complementary dominating eigenvalues, complementary dominating energy.

#### **Short Profile**

#### K. B. Murthy

Department of Mathematics College of Agriculture in University of Agricultural Science ,GKVK, Bangalore.

called the complementary (inverse) domination number of *G* and it is denoted by  $\gamma_c(G)$ . Any complementary dominating set of *G* which has  $\gamma_c(G)$ vertices is called a  $\gamma_c$ -set of *G*. If a graph *G* has no isolated vertices, then the complement V -D of every minimal dominating set *D* contains a dominating set. Thus every graph without isolated vertices contains a complementary dominating set with respect to a minimum dominating set and so every graph has a complementary domination number. This concept of complementary domination was introduced by V. R.

values of the eigenvalues of G, i.e.

$$E(G) = \sum_{i=1}^{n} |\lambda_i|$$

For more details on the mathematical aspects of the theory of graph energy see [2, 8, 18]. The basic properties including various upper and lower bounds for energy of a graph have been established in [17, 19], and it has found remarkable chemical applications in the molecular orbital theory of conjugated molecules [5, 6]. Recently C. Adiga et al [1] defined the minimum

<sup>&</sup>lt;sup>1</sup>Department of Mathematics College of Agriculture , University of Agricultural Science ,GKVK, Bangalore.

<sup>&</sup>lt;sup>2</sup>Department of Mathematics, P.E.S.College of Engineering Mandya.

<sup>&</sup>lt;sup>3</sup>Department of Studies in Mathematics, University of Mysore, Manasagangotri ,Mysuru.

covering energy,  $E_C(G)$  of a graph which depends on its particular minimum cover *C*. Further, minimum dominating energy, Laplacian minimum dominating energy and minimum dominating distance energy of a graph *G* can be found in [11, 13, 14] and the references cited there in.

Motivated by these papers, we study complementary dominating energy  $E_{CD}(G)$  of a graph G. We compute complementary dominating energies of some standard and well-known families of graphs. Upper and lower bounds for  $E_{CD}(G)$  are established. It is possible that the upper dominating energy that we are considering in this paper may be have some applications in chemistry as well as in other areas.

#### The Complementary Domination Energy of a Graph

Let G be a graph of order n with vertex set V $(G) = \{v_1, v_2, \dots, v_n\}$  and edge set E(G). Let D be a y-set of a graph G. A dominating set  $D^1 \subseteq V - D$  is called a complementary dominating set of G with respect to D. The complementary domination number  $\gamma_c(G)$  of G is the cardinality of a smallest complementary dominating set of G. Any complementary dominating set  $D^{\perp}$  with cardinality equals to  $\gamma_c(G)$  is called minimum complementary dominating set of G. The complementary dominating matrix of G is the  $n \times n$ matrix  $A_{CD}(G) = (a_{ij})$ , where

$$a_{ij} = \begin{cases} 1, & \text{if } v_i v_j \in E; \\ 1, & \text{if } i = j \text{ and } v_i \in D'; \\ 0, & \text{othewise.} \end{cases}$$

The characteristic polynomial of  $A_{CD}(G)$  is denoted by

 $f_n(G,\lambda) := det(\lambda I - A_{CD}(G)).$ 

The complementary dominating eigenvalues of the graph *G* are the eigenvalues of  $A_{CD}(G)$ . Since  $A_{CD}(G)$  is real and symmetric, its eigenvalues are real numbers and we label them in non-increasing order  $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ . The complementary dominating energy of *G* is defined as:

$$E_{CD}(G) = \sum_{i=1}^{n} |\lambda_i|.$$

We first compute the complementary dominating energy of a graph in Figure 1



Figure 1

Let *G* be a graph in Figure 1, with vertices set  $\{v_1, v_2, v_3, v_4, v_5, v_6\}$  and let its dominating set be *D* =  $\{v_1, v_3\}$ . The complementary set of *G* with respect to *D* are

$$D_1' = \{v_2, v_5\}, \, D_2' = \{v_4, v_6\} \text{ or } D_3' = \{v_2, v_4\}$$
 Then

$$A_{CD_1}(G) = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

The characteristic polynomial of  $A_{CD1}(G)$  is

$$f_n(G,\lambda) = \lambda^6 - 2\lambda^5 - 7\lambda^4 + 7\lambda^3 + 13\lambda^2 - 4\lambda - 4$$

Hence, the complementary dominating eigenvalues are  $\lambda_1 \approx 3.4715$ ,  $\lambda_2 \approx 1.6524$ ,  $\lambda_3 \approx 1.3061$ ,  $\lambda_4 \approx 0.6947$ ,  $\lambda_5 \approx -0.4983$ ,  $\lambda_6 \approx -1.6973$ . Therefore the complementary dominating energy of *G* is

$$E_{CD1}(G)\approx 9.0035.$$

If we take another complementary dominating set of G, namely  $D_2' = \{v_4, v_6\}$ , we get that

$$A_{CD_2}(G) = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

The characteristic polynomial of  $A_{CD2}(G)$  is

$$f_n(G,\lambda) = \lambda^6 - 2\lambda^5 - 7\lambda^4 + 6\lambda^3 + 14\lambda^2 - 4\lambda - 8\lambda$$

The complementary dominating eigenvalues are  $\lambda_1 \approx 3.2361$ ,  $\lambda_2 \approx 1.4142$ ,  $\lambda_3 \approx 1.0000$   $\lambda_4 \approx -1$ ,  $\lambda_5 \approx -1.2361$   $\lambda_6 \approx -1.4142$ . Therefore the complementary dominating energy of *G* is

 $E_{CD2}(G)\approx 9.3006.$ 

This example illustrates the fact that the complementary dominating energy of a graph *G* depends on the choice of the complementary dominating set. i.e. the complementary dominating energy is not a graph invariant.

In the following section, we introduce some properties of characteristic polynomials of complementary dominating matrix of a graph*G*.

**Theorem 2.1.** Let G be a graph of order n, size m, complementary dominating set D and let

$$fn(G,\lambda) = c_0\lambda^n + c_1^{n-1} + c_2^{n-2} + \dots + c_n$$

be the characteristic polynomials of complementary dominating matrix of a graph G.

Then

1. 
$$c_0 = 1$$
.  
2.  $c_1 = -|D|$   
3.  $c_2 = \binom{|D|}{2} - m$ 

*Proof.* 1. From the definition of  $f_n(G,\lambda)$ .

2. Since the sum of diagonal elements of  $A_{CD}(G)$  is equal to |D|. The sum of determinants of all  $1 \times 1$ 

principal submatrices of  $A_{CD}(G)$  is the trace of  $A_{CD}(G)$ , which evidently is equal to |D|. Thus,  $(-1)^{1}c_{1} = |D|$ .

3.  $(-1)^2 c_2$  is equal to the sum of determinants of all 2 × 2 principal submatrices of  $A_{CD}(G)$ , that is

$$c_{2} = \sum_{1 \leq i < j \leq n} \begin{vmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{vmatrix}$$
$$= \sum_{1 \leq i < j \leq n} (a_{ii}a_{jj} - a_{ij}a_{ji})$$
$$= \sum_{1 \leq i < j \leq n} a_{ii}a_{jj} - \sum_{1 \leq i < j \leq n} a_{ij}^{2}$$
$$= \binom{|D|}{2} - m.$$

**Theorem 2.2.** Let *G* be a graph of order *n*. Let  $\lambda_1, \lambda_2, ..., \lambda_n$  be the eigenvalues of

 $A_{CD}(G)$ . Then

(i) 
$$\sum_{i}^{n} \lambda_{i} = |D|.$$
  
(ii)  $\sum_{i}^{n} \lambda_{i}^{2} = |D| + 2m.$ 

*Proof.* (*i*) Since the sum of the eigenvalues of  $A_{CD}(G)$  is the trace of  $A_{CD}(G)$ , then

$$\sum_{t=1}^n \lambda_t = \sum_{t=1}^n a_{tt} = |D|$$

(*ii*) Similarly the sum of squares eigenvalues of  $A_{CD}(G)$  is the trace of  $(A_{CD}(G))^2$ . Then

$$\sum_{i=1}^{n} \lambda_i^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} a_{ji}$$
$$= \sum_{i=1}^{n} a_{ii}^2 + \sum_{i \neq j}^{n} a_{ij} a_{ji}$$
$$= \sum_{i=1}^{n} a_{ii}^2 + 2 \sum_{i < j}^{n} a_{ij}^2$$
$$= |D| + 2m.$$

Bapat and S. Pati [3], proved that if the graph energy is a rational number then it is an even integer. Similar result for minimum dominating energy is given in the following theorem.

**Theorem 2.3.** Let G be a graph with a complementary dominating set D. If the complementary dominating energy  $E_{CD}(G)$  of G is a rational number, then

 $E_{CD}(G) \equiv |D| \pmod{2}.$ 

*Proof.* Let  $\lambda_1, \lambda_2, ..., \lambda_n$  be the complementary dominating eigenvalues of a graph *G* of which  $\lambda_1, \lambda_2, ..., \lambda_r$  are positive and the rest are non-positive, then

$$\sum_{i=1}^{n} |\lambda_i| = (\lambda_1 + \lambda_2 + \dots + \lambda_r) - (\lambda_{r+1} + \lambda_{r+2} + \dots + \lambda_n)$$

 $= 2(\lambda_1 + \lambda_2 + ... + \lambda_r) - (\lambda_1 + \lambda_2 + ... + \lambda_n).$ = 2q - |D|. Where q =  $\lambda_1 + \lambda_2 + ... + \lambda_r$ . Since  $\lambda_1, \lambda_2, ..., \lambda_r$  are algebraic integers, so is their

sum. Hence  $(\lambda_1 + \lambda_2 + ... + \lambda_r)$  must be an integer if  $E_{CD}(G)$  is rational. Hence the theorem.

# The Complementary Dominating Energy of Some Graphs

In this section, we investigate the exact values of the complementary dominating energy of some standard and well-known graphs.

**Theorem 3.1.** For  $n \ge 2$ , the complementary dominating energy of complete graph

K<sub>n</sub>, is

$$E_{CD}(K_n) = (n-2) + \sqrt{(n^2 - 2n - 5)}$$

*Proof.* For complete graphs  $K_n$ , let  $D^1 = \{v_i\}$  for  $1 \le i \le n$  be the complementary dominating set with respect the dominating set  $D = \{v_j\}$  for  $i \ne j$ ,  $1 \le j \le n$ . Since, the complementary dominating number is equal to the domination number (namely one). Hence, we get the complementary dominating matrix  $A_{CD}$  from the minimum dominating matrix  $A_D$  [14] by pair of rearranging the rows and columns.

Therefore,

$$E_{CD}(K_n) = E_D(K_n) = (n-2) + \sqrt{(n^2 - 2n - 5)}$$

**Theorem 3.2.** For the complete bipartite graph  $K_{r,r}$ ,  $2 \le r$ , the complementary dominating energy is equal to

$$(r+1) + \sqrt{r^2 + 2r - 3}$$

*Proof.* For the complete bipartite graph  $K_{r,r}$  (2  $\leq r$ ) with vertex set  $V = (V_1, V_2)$  where  $V_1$  and  $V_2$  are the partite sets of its,  $V_1 = \{v_1, v_2, \dots, v_r\}$  and  $V_2 = \{u_1, u_2, \dots, u_r\}$ . The dominating set is  $D = \{v_1, u_1\}$  and the complementary dominating set with respect to D is  $D^1 = \{v_2, u_2\}$ . Hence, the complementary dominating matrix of  $K_{r,r}$ 

get it from  $A_D(K_{r,r})$  by Pair of rearranging the rows and columns. Then

$$\mathbf{A}_{CD}(K_{r,r}) = \begin{pmatrix} 1 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 & 0 & 0 & \cdots & 0 \end{pmatrix}_{2r \times 2r}$$

The characteristic polynomial of  $A_{CD}(K_{r,r})$  is

$$f_n(K_{r,r},\lambda) = \begin{vmatrix} \lambda - 1 & 0 & \cdots & 0 & -1 & -1 & \cdots & -1 \\ 0 & \lambda & \cdots & 0 & -1 & -1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda & -1 & -1 & \cdots & -1 \\ -1 & -1 & \cdots & -1 & \lambda -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & -1 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{2r \times 2r}$$
$$\approx \lambda^{2r-4} \left(\lambda^2 + (r-1)\lambda - (r-1)\right) \left(\lambda^2 - (r+1)\lambda - (r-1)\right)$$

 $= \lambda^{2r-4} \left( \lambda^2 + (r-1)\lambda - (r-1) \right) \left( \lambda^2 - (r+1)\lambda - (r-1) \right)$ The spectrum of  $K_{r,r}$  is CD Spec( $K_{r,r}$ ) =

$$\begin{pmatrix} 0 & \frac{-(r-1)+\sqrt{r^2+2r-3}}{2} & \frac{-(r-1)-\sqrt{r^2+2r-3}}{2} & \frac{(r+1)+\sqrt{r^2-2r+5}}{2} & \frac{(r+1)-\sqrt{r^2-2r+5}}{2} \\ 2r-4 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Therefore, the complementary dominating energy of a complete bipartite graph is

$$\underline{E_{CD}(K_{r,r})} = (r+1) + \sqrt{r^2 + 2r - 3}.$$

**Theorem 3.3.** For  $n \ge 2$ , the complementary dominating energy of a star graph  $K_{1,n-1}$  is equal to

$$(n-2) + \sqrt{4n-3}$$

*Proof.* Let  $K_{1,n-1}$  be a star graph with vertex set  $V = \{v_0, v_1, v_2, \dots, v_{n-1}\}$ , where  $v_0$  is the central vertex. Since

the minimum dominating set of  $K_{1,n-1}$  is  $D = \{v_0\}$  it follows that the complementary dominating set of  $K_{1,n-1}$  with respect to D is  $D^1 = \{v_1, v_2, ..., v_{n-1}\}$ . Hence, the complementary dominating matrix of  $K_{1,n-1}$  is

$$A_{CD}(K_{1,n-1}) = \begin{pmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \end{pmatrix}_{n \times n}$$

The characteristic polynomial of  $A_{CD}(K_{1,n-1})$  is

$$f_n(K_{1,n-1},\lambda) = \begin{vmatrix} \lambda & -1 & -1 & \cdots & -1 \\ -1 & \lambda - 1 & 0 & \cdots & 0 \\ -1 & 0 & \lambda - 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \cdots & \lambda - 1 \end{vmatrix}$$
$$= (\lambda - 1)^{n-2} \left[ \lambda^2 - \lambda - (n-1) \right].$$

The spectrum of  $K_{1,n-1}$  is

$$CD \ Spec(K_{1,n-1}) = \left(\begin{array}{ccc} 1 & \frac{1+\sqrt{1+4(n-1)}}{2} & \frac{1-\sqrt{1+4(n-1)}}{2} \\ n-2 & 1 & 1 \end{array}\right)$$

Therefore, the complementary dominating energy of a star graph is

$$E_{CD}(K_{1,n-1}) = (n-2) + \sqrt{4n-3}.$$

**Definition 3.4.** The double star graph  $S_{n,m}$  is the graph constructed from union  $K_{1,n-1}$  and  $K_{1,m-1}$  by join whose centers vertices  $v_0$  and  $u_0$  by an edge. A vertex set

 $V(S_{n,m}) = \{v_0, v_1, ..., v_{n-1}, u_0, u_1, ..., u_{m-1}\}$  and edge set  $E(S_{n,m}) = \{v_0 u_0, v_0 v_i, u_0 u_j : 1 \le i \le n -1, 1 \le j \le m -1\}$ . Therefore, double star graph is bipartite graph.

**Theorem 3.5.** For  $m \ge 3$ , the upper dominating energy of double star graph  $S_{m,m}$  is equal to

$$(2m-4) + 2\sqrt{m} + 2\sqrt{m-1}$$

*Proof.* For the double star graph  $S_{m,m}$  with vertex set  $V = \{v_0, v_1, \dots, v_{m-1}, u_0, u_1, \dots, u_{m-1}\}$  the dominating set is  $D = \{v_0, u_0\}$ . Hence the complementary dominating set of  $S_{m,m}$  withe respect to D is  $D^1 = \{v_1, v_2, \dots, v_{m-1}, u_1, u_2, \dots, u_{m-1}\}$ . Then

$$A_{CD}(S_{m,m}) = \begin{pmatrix} 0 & 1 & 1 & \cdots & 1 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 & 1 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 1 \end{pmatrix}_{2m \times 2m}$$

The characteristic polynomial of  $A_{CD}(S_{m,m})$  is

|                          | λ  | $^{-1}$       | $^{-1}$       |    | -1            | -1        | 0           | 0             |     | 0             |
|--------------------------|----|---------------|---------------|----|---------------|-----------|-------------|---------------|-----|---------------|
|                          | -1 | $\lambda - 1$ | 0             |    | 0             | 0         | 0           | 0             |     | 0             |
|                          | -1 | 0             | $\lambda - 1$ |    | 0             | 0         | 0           | 0             |     | 0             |
|                          | ÷  | :             | :             | ۰. | :             | ÷         | :           | :             | ۰., | :             |
|                          | -1 | 0             | 0             |    | $\lambda - 1$ | 0         | 0           | 0             |     | 0             |
| $f_m(S_{m,m},\lambda) =$ | -1 | 0             | 0             |    | 0             | $\lambda$ | $^{-1}$     | $^{-1}$       |     | -1            |
|                          | 0  | 0             | 0             |    | 0             | -1        | $\lambda-1$ | 0             |     | 0             |
|                          | 0  | 0             | 0             |    | 0             | -1        | 0           | $\lambda - 1$ |     | 0             |
|                          | ÷  | :             | :             | ۰. | :             | ÷         | ÷           | ÷             | ۰.  | ÷             |
|                          | 0  | 0             | 0             |    | 0             | -1        | 0           | 0             |     | 0             |
|                          | 0  | 0             | 0             |    | 0             | $^{-1}$   | 0           | 0             |     | $\lambda - 1$ |

$$= (\lambda - 1)^{2m-4} \left(\lambda^2 - m\right) \left(\lambda^2 - 2\lambda - (m-2)\right)$$

Hence,

 $CD \ Spec(S_{m,m}) = \left(\begin{array}{cccc} 1 & \sqrt{m} & -\sqrt{m} & 1 + \sqrt{m-1} & 1 - \sqrt{m-1} \\ 2m-4 & 1 & 1 & 1 & 1 \end{array}\right)$ 

Therefore, the complementary dominating energy of double star graph is

$$E_{CD}(S_{m,m}) = (2m-4) + 2\sqrt{m} + \sqrt{m-1}$$

**Definition 3.6.** The cocktail party graph, denoted by  $K_{2xp}$ , is a graph having vertex

set 
$$V(K_{2,p}) = \bigcup_{i=1}^{R} (u_i, v_i)$$
 and edge set  $E(K_{2,p}) = \{\underbrace{u_{u_i h_i}, v_{u_i h_i}, v_{u_i h_i}, v_{u_i h_i}, v_{u_i h_i}: 1 \le i < i = 1 \ j \le p\}$ . i.e.,  
 $n = 2p, \ m = \frac{p^2 - 3p}{2} and for ever v \equiv V(K_{2,p}), \ d(v) = 2p - 2.$ 

**Theorem 3.7.** For the cocktail party graph  $K_{2\times p}$  of order n = 2p,  $p \ge 3$ , the complementary dominating energy is equal to

$$(2p-3) + \sqrt{4p^2 - 4p - 9}.$$

*Proof.* For cocktail party graphs  $K_{2\times n}$  with minimum domination set  $D = \{u_i, v_i\}$  for  $1 \le i \le p$  the complementary dominating set with respect to D is  $D^1 = \{u_i, v_i\}$  for  $j \ne i$  and  $1 \le j \le p$ . Hence, for cocktail party graphs the complementary dominating matrix get from a minimum dominating matrix [14] by rearranging the

rows. Therefore the complementary dominating energy

$$E_{CD}(K_{2\times n}) = E_D(K_n) = (2p-3) + \sqrt{4p^2 - 4p - 9}.$$

## 4Bounds for Complementary Domination Energy of a Graph

In this section we shall investigate with some bounds for complementary dominating energy of a graph.

**Theorem 4.1.** Let G be a graph of order n and size m. Then

$$\sqrt{2m + \gamma c(G)} \leq E_{CD}(G) \leq \sqrt{n(2m + \gamma c(G))}$$

Proof. Consider the Couchy-Schwartiz inequality

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} a_i^2\right) = 0$$

By choose  $a_i = 1$  and  $b_i = |\lambda_i|$ , we get

$$(E_{CD}(G))^2 = \left(\sum_{i=1}^n |\lambda_i|\right)^2 \le \left(\sum_{i=1}^n 1\right) \left(\sum_{i=1}^n \lambda_i^2\right)$$
$$\le n(2m + |D|)$$
$$\le n(2m + \gamma_c(G)).$$

Therefore, the upper bound is hold. For the lower bound, since

$$\left(\sum_{i=1}^{n} |\lambda_i|\right)^2 \ge \sum_{i=1}^{n} \lambda_i^2$$

Then

$$(E_{CD}(G))^2 \ge \sum_{i=1}^n \lambda_i^2 = 2m + |D| = 2m + \gamma_c(G).$$

Therefore.

$$E_{CD}(G) \ge \sqrt{2m + \gamma_c(G)}.$$

Similar to McClellands [19] bounds for energy of a graph, bounds for  $E_{CD}(G)$  are given in the following theorem.

**Theorem 4.2.** Let G be a graph of order and size n and m, respectively. If  $P = det(A_{CD}(G))$ , then

$$E_{CD}(G) \ge \sqrt{2m + \gamma_c(G) + n(n-1)P^{2/n}}.$$

Proof. Since

$$\left(E_{CD}(G)\right)^2 = \left(\sum_{i=1}^n |\lambda_i|\right)^2 = \left(\sum_{i=1}^n |\lambda_i|\right) \left(\sum_{i=1}^n |\lambda_i|\right) = \sum_{i=1}^n |\lambda_i|^2 + 2\sum_{i \neq j} |\lambda_i| |\lambda_j|$$

Employing the inequality between the arithmetic and geometric means, we get

Thus

$$\frac{1}{n(n-1)}\sum_{i\neq j}|\lambda_i||\lambda_j| \ge \left(\prod_{i\neq j}|\lambda_i||\lambda_j|\right)^{1/[n(n-1)]}.$$

$$(E_{UD}(G))^{2} \geq \sum_{i=1}^{n} |\lambda_{i}|^{2} + n(n-1) \left(\prod_{i \neq j} |\lambda_{i}| |\lambda_{j}|\right)^{1/[n(n-1)]}$$
$$\geq \sum_{i=1}^{n} |\lambda_{i}|^{2} + n(n-1) \left(\prod_{i=j} |\lambda_{i}|^{2(n-1)}\right)^{1/[n(n-1)]}$$
$$= \sum_{i=1}^{n} |\lambda_{i}|^{2} + n(n-1) \left|\prod_{i \neq j} \lambda_{i}\right|^{2/n}$$
$$= 2m + \gamma_{c}(G) + n(n-1)P^{2/n}.$$

This completes the proof.

#### REFERENCES

- [1] C. Adiga, A. Bayad, I. Gutman, S. A. Srinivas, The minimum covering energy of a graph, *Kragujevac Journal Science*, **34**(2012), 39-56.
- [2] R. B. Bapat, *Graphs and Matrices*, Hindustan Book Agency, 2011.
- [3] R. B. Bapat, S. Pati, Energy of a graph is never an odd integer, *Bulletin of Kerala Mathematics Association*, **1**(2011), 129-132.
- [4] T. T. Chelvam and G. S. Grace Prema, Equality of domination and inverse domination numbers, Ars Combin., 95 (2010) 103-111.
- [5] A. Graovac, I. Gutman and N. Trinajsti´c, Topological Approach to the Chemistry of Conjugated Molecules, Springer, Berlin 1977.
- [6] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, *Springer, Berlin*, 1986.
- [7] I. Gutman, The energy of a graph, *Ber. Math-Statist. Sekt. Forschungsz. Graz*, **103**(1978), 1-22.
- [8] I. Gutman, X. Li, J. Zhang, Graph Energy, (Ed-s: M. Dehmer, F. Em-mert), Streib., Analysis of Complex Networks, From Biology to Linguistics, WileyVCH, Weinheim, (2009), 145-174.
- [9] F. Harary, Graph Theory, Addison Wesley, Massachusetts, 1969.
- [10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, *Inc., New York* 1998.
- [11] R. Kanna, B. N. Dharmendra, and G. Sridhara, Laplacian minimum dominating energy of a graph, International Journal of Pure and Applied Mathematics, bf89:4 (2013), 565-581.
- [12] G. S. Domke J. E. Dunbar and L. R. M arkus, The inverse domination number of a graph, Ars. Combin. 72 (2004) 149-160.
- [13] R. Kanna, B. N. Dharmendra, and G. Sridhara, *Minimum dominating distance energy of a graph*, Journal of Indonesian Mathematics Sociaty, bf20 (2014), 1929.

- [14] R. Kanna, B. N. Dharmendra, and G. Sridhara, *Minimum dominating energy of a graph*, International Journal of Pure and Applied Mathematics, bf85:4 (2013), 707-718.
- [15] V. R. Kulli and A. Sigarkanti, *Inverse domination in graphs*, Nat. Acad. Sciletters, **14**(1991), 473-475.
- [16] V. R. Kulli and N. D. Soner, Complementary edge domination in graphs, Indian J. Pure Appl. Math. 28(1997) 917-920.
- [17] H. Liu, M. Lu and F. Tian, Some upper bounds for the energy of graphs, Journal of Mathematical Chemistry, 41, bf1 (2007)
- [18] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New york Heidelberg Dordrecht, London 2012.
  B. J. McClelland, Properties of the latent roots of a matrix: The estimation of π-electron energies,

Journal of Chemistry and Physics, **54** (1971), 640-643.