

Indian Streams Research Journal

QUASI-IDEALS -IN GAMMA-SEMI-NEAR-RINGS

S. J. Alandkar

Head and Associate Professor, Department of Mathematics & Statistics, Walchand College of Arts and Science, Solapur [M.S.]

ABSTRACT: In this paper, the concept of quasi ideal in a Γ -semi near ring is introduced and investigated some of its properties.

AMS Classification: 08A72, 03E72.

ΚΕΥ-WORDS: Γ-semi-nearring , quasi ideals of a Γ-semi-nearring.

§1. INTRODUCTION.

The concept of Γ - nearring was introduced by Satyanarayana [8]. Also M. K. Rao [6] studied Γ -semir ring and then N. K. Saha at el [7] defined the generalization of Γ -semirring and Γ - near ring as a Γ semi-near rings and studied its properties. The notion of quasi-ideal, which is generalization of a left and a right ideal, is first introduced for semigroups by Stenfeld[11] and then for rings[10-12] and its properties. Iseki [5] introduced the concept of quasi-ideals for a semiring without zero and gave some characterization of it. Shabir et al [9] studied quasi-ideals of discussed quasi-ideals of Γ -semir ring

Chinram[2-3] studied quasi-ideals of Γ -semigroups and Γ semir ring. Also Dutta[4] discussed quasi-ideals of Γ -semir ring In this Paper, we introduce the concept of quasi-ideals of a Γ - semi near ring and study its properties. Throughout this paper M denotes a right Γ seminearring and we shall call it Γ -seminearring only unless otherwise specified.

§2. PRELIMINARIES.

We begin with the following definition.

Definition 2.1. Seminearring:-A nonempty set N together with two binary operations '+' and '.' satisfying the following conditions, is said to be a seminear ring.

(N, +) is a semigroup,

 (N, \cdot) is a semigroup,

 $(x+y)\cdot z = x\cdot z + y\cdot z$ for all $x, y, z \in N$.

Precisely speaking 'seminear ring' is a 'right seminear ring' here since every seminear ring satisfy one distributive law (left / right distributive law).

Every near ring is a seminear ring but every seminear ring need not be a nearring. For this we consider the following Example.

Example 1:-Let $N = \{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ / a, b be nonnegative integers}, (N, +, .) is seminear ring under the matrix addition and matrix multiplication. Here N is a seminear ring which is not a near ring since (N, +) is a semigroup but not a group since additive inverse does not exist for all members of N.

Definition 2.2. F-near ring:-Let (M, +) be a group (need not be abelian) and Γ be a nonempty set. Then M= (M, +, Γ) is a Γ -near ring if there exists a mapping M× Γ ×M→M (the image of (x, α , y)→x α y) satisfying the following conditions :

- i) $(M, +, \alpha)$ is a right near ring,
- ii) $x\alpha (y\beta z) = (x\alpha y) \beta z$ for all x, y, z $\in M$ and $\alpha, \beta \in \Gamma$.

Precisely speaking ' Γ -near ring' is a ' Γ -near ring'. Every near ring is a special type of Γ -near ring for singleton set Γ whereas every Γ -near ring a near ring for each member of Γ . See the following example.

Example 2: Let $G = Z_8 = \{0, 1, 2, ...7\}$, the additive group of integers modulo 8 and X= {a, b}. Define m_i: X \rightarrow G, m_i(a) = 0, m_i(b) = i, for $0 \le i \le 7$. such that M ={m₀, m₁, ..., m₇} and let $\Gamma = \{g_0, g_1\}$ where $g_i : G \rightarrow X$ define by

$$g_{0} = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ a & a & a & a & a & a & a & a \end{pmatrix},$$
$$g_{1} = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ a & a & a & b & a & a & a & b \end{pmatrix}$$

For $m \in M$, $g \in \Gamma$, $x \in G$. Take mgx = m(g(x)).

Then $(M, +, \Gamma)$ becomes Γ -near-ring.

Definition 2.3. Γ -seminear ring:-Let M be an additive semigroup and Γ be a nonempty set. Then a semigroup (M, α) is called a right Γ -seminear ring if there exists a mapping M × Γ × M \rightarrow M (denoted by (a, α , b) \rightarrow a α b) satisfying the conditions:

i) $(a+b) \alpha c = a\alpha c + b\alpha c$,

ii) $a\alpha(b\beta c) = (a\alpha b)\beta c$

for all a, b, $c \in M$ and $\alpha, \beta \in \Gamma$. Precisely speaking ' Γ -seminear ring' to mean 'right Γ -seminear ring'.

Every Γ -near ring is a Γ -seminear ring but every Γ -seminear ring need not be a Γ -near ring. For this we consider the following Example.

Example 3: Let $M = \{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} / a$, b be nonnegative integers $\} = \Gamma$, Then (M, +, Γ) is Γ - seminear ring under the matrix addition and matrix multiplication. Here N is a seminear ring which is not a near ring since (M, +) is a semigroup but not a group since additive inverse does not exist for all members of M. Define $M \times \Gamma \times M \rightarrow M$ (denoted by (a, α , b) $\rightarrow a\alpha b$) where $a\alpha b$ is matrix multiplication of a, α , b Then M is a Γ -seminear ring but not a Γ -near ring. Since (M, +) is a semigroup which is not a group.

Definition 2.4. Sub- Γ -seminear ring:- Let M be a Γ -seminear ring. A nonempty subset M' of M is a sub- Γ seminear ring of M if M' is also a Γ -seminear ring with the same operations of M.

Definition 2.5. Ideal of a \Gamma-seminear ring:-A subset I of a Γ -seminear ring M is a left (resp. right) ideal of a Γ seminear ring M if I is a subsemigroup of M and rax $\in I(resp. xar \in I)$ for all x, y $\in I$ and r $\in M$, $\alpha \in \Gamma$.

If I is both left as well as right ideal then we say that I is an ideal of M.

Example 4: Consider the example of Γ -seminear ring (M, +, .) mentioned above. We have I={ $\begin{bmatrix} 2a & 2b \\ 0 & 0 \end{bmatrix}$ / a,

b be nonnegative integers} is an ideal of M.

Definition 2.6 : Let I and J be two nonempty subsets of M, then we define

 $I + J = \{i + j / i \in I, j \in J\}$ and

 $|\Gamma J = \{ \sum_{i=1}^{n} x_i \alpha_i y_i / x_i \in I, \alpha_i \in \Gamma, y_i \in J \}$

If J is the set of natural numbers, then

 $J \Gamma = \{ \sum_{i=1}^{n} x_i \alpha_i / x_i \in J, \alpha_i \in \Gamma \}.$

Definition 2.7. Let X be two nonempty subset of M. By (X), we mean the left ideal of M generated by X(i.e., intersection of all left ideal of M containing X).

Similarly $(X)_{r}(X)_{t}$ denote the right and two sided ideal generated by X respectively.

Definition 2.8. Let left (right, two-sided) ideal I of a of Γ -seminear ring M is said to be left (right, two-sided) k-ideal of M if a, $a+x \in I$, then $x \in I$, for any $x \in M$

§3. QUASI IDEALS OF A Γ-SEMINEAR RING.

Firstly we see the two basic results

Theorem 3.1. For each nonempty subset X of M the following two statements hold.

(i) M Γ X is a left ideal,

(ii) X ΓM is a right ideal,

(iii) . $M \Gamma X \Gamma M$ is an ideal of M.

Proof. (i)

 $\mathsf{M} \mathsf{\Gamma} \mathsf{X} = \{ \sum_{i=1}^{n} \mathsf{m}_{i} \alpha_{i} \mathsf{x}_{i} / \mathsf{m}_{i} \in \mathsf{M}, \alpha_{i} \in \mathsf{\Gamma}, \mathsf{x}_{i} \in \mathsf{X} \}$

Let a, $b \in M \Gamma X$.

Then $a+b = \sum_{i=1}^{n} m_i \alpha_i x_i + \sum_{j=1}^{n} m_j \beta_j y_j$

Implies a+b is a finite sum. Hence a+b \in M Γ X and this shows M Γ X is a subsemigroup of (M, +). For t \in M, a \in MFX, and $\beta \in$ F, then

 $t\beta a = t\beta \sum_{i=1}^{n} m_i \alpha_i x_i = \sum_{i=1}^{n} t\beta (m_i \alpha_i x_i) = \sum_{i=1}^{n} (t\beta m_i) \alpha_i x_i \in M \Gamma X.$ Therefore M Γ X is a left ideal of M.

(ii) Similarly we can prove that $X\Gamma M$ is a right ideal of M.

(iii)By (i)MTX is a left ideal of M. Hence MTXTM is a right ideal of M by (ii).

(iv)Similarly, by (ii) XΓM is a right ideal of M. Hence MΓXΓM is a left t ideal of M by (i). Therefore MΓXΓM is an ideal of M.

Theorem 3.2. For any nonempty subset X of M we have

(i) If M has right unit element I, then $(X)_1 = M \Gamma X$,

(ii) If M has right unit element I, then $(X)_r = X\Gamma M_{r,r}$

(iii) If M has right unit element I, then $(X)_t = M \Gamma X \Gamma M$.

Proof. Let M contain left unit element I. Then I $\alpha a = a$, for every $a \in M$ and $\alpha \in \Gamma$. For any $x \in X$, $x = 1\alpha x \in M\Gamma X$. Hence X is a subset of M ΓX . As M ΓX is a left ideal of M, NX $\subseteq M \Gamma X$. But then we have $(X)_1 = NX + M\Gamma X$ (see [2]). This iplies $(X)_1 = M\Gamma X + M\Gamma X \subseteq M \Gamma X$. As $(X)_1$ is the smallest left ideal of M containing X. This shows that $(X)_1 = M \Gamma X$. Similarly, we can prove that $(X)_r = X\Gamma M$ and $(X)_t = M \Gamma X\Gamma M$.

Chinram [2] has defined a quasi ideal Q in a Γ-seminear ring M as follows.

Definition 3.3. A subsemigroup Q of (M, +) is a quasi-ideal of M if

 $(M \Gamma Q) \cap (Q \Gamma M) \subseteq Q.$

Example 5. Let N be the set of natural numbers and $\Gamma = 2N$. Then N is a Γ -seminear ring and A = 3N is a quasiideal of a Γ -seminear ring N.

Example 6. Consider a Γ -seminear ring M = M₂×₂(N₀), where N₀ denotes the set of natural numbers with zero and Γ =M. Define A α B = usual matrix product of A, α and B \in M. Then Q = { $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ / a \in N₀ } is a quasi-ideal of

a Γ-seminear ring M.

Properties.

(1) By a quasi-ideal Q in a Γ -seminearring M we mean an additive subsemigroup of M such that $(M\Gamma Q) \cap (Q \ \Gamma M) \subseteq Q$ (See Iseki [5]). As every seminearring is a Γ -seminear ring. The two definitions given in [2] and [5] of quasi ideals coincide in a seminearring.

(2) Every quasi-ideal of M is a sub Γ -seminearring of M.

(3) Every one sided ideal or two sided ideal of M is a quasi-ideal of M but converse need not be true. For this consider Γ -seminear ring given in Example (5). Here $Q = \{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} / a \in N_0 \}$ is a quasi-

ideal but neither a left ideal nor a right ideal of M.

(4) If Q_1 and Q_2 are quasi-ideals of M, then $Q_1\Gamma Q_2$ need not be a quasi-ideal of M. For this consider the following example

Example 7. If $T = \{ \begin{bmatrix} a & 0 \\ b & 1 \end{bmatrix} / a, b \in R^+ \}$, then T is a semigroup with respect to usual matrix multiplication.

If $M = \{ \begin{bmatrix} a & 0 \\ b & 1 \end{bmatrix} / a, b \in R^+ \} \cup \{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \}$ and $\Gamma = M$, then M is a Γ -seminearring with usual matrix multiplication. Define + in M by A + B = 0 if A, B \in M and A + 0 = 0 + A = A, for all A \in M. If $Q_1 = \{ \begin{bmatrix} a & 0 \\ 1 & -4 \end{bmatrix} / a, b \in R^+, 0 \le a \le b \} \cup \{ \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix} \}$ and

$$Q_{1} = \{ \begin{bmatrix} a & 0 \\ b & 1 \end{bmatrix} / a, b \in \mathbb{R}^{+}, a > 0, b > 5 \} \cup \{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \} a$$
$$Q_{2} = \{ \begin{bmatrix} a & 0 \\ b & 1 \end{bmatrix} / a, b \in \mathbb{R}^{+}, a > 0, b > 5 \} \cup \{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \}.$$

Then Q_1 is a right ideal and Q_2 is a left ideals of M and hence Then Q_1 and Q_2 are quasi-ideals of M. But $Q_1 \Gamma Q_2$ is not quasi-ideals of M.

(5) The sum of two quasi-ideals of M need not be a quasi-ideal of M. We illustrate this by the following example.

Example 8. Let $M = M_2 \times_2(N_0)$ be a Γ -seminear ring, If $\Gamma = M$, then M forms a Γ -seminearring with A $\alpha B =$ usual matrix product of A, α and B \in M for all A, α and B \in M.

 $Q_1 = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} / a \in N_0 \right\} \text{ and } Q_2 = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & b \end{bmatrix} / a \in N_0 \right\} \text{ are quasi-ideals of a } \Gamma \text{-seminear ring } M. \text{ But } Q_1 + Q_2 = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} / a \text{, } b \in N_0 \right\} \text{ is not a quasi-ideal of } M.$

(6) Arbitrary intersection of quasi-ideals of M is either empty or a quasi-ideal of M.

Proof. Let $T = \bigcap_{i \in \Delta} \{Q_i | Q_i \text{ is a quasiideal of } M\}$, where Δ denotes any indexing set, be a nonempty set. T is a subsemigroup of (M, +). Further

 $(M \ \Gamma T) \cap (T \Gamma M) = (M \ \Gamma (\bigcap_{i \in \Delta} Q_i)) \cap ((\bigcap_{i \in \Delta} Q_i) \ \Gamma M) \subseteq (Q_i \ \Gamma M) \cap (M \Gamma Q_i)$ $\subseteq Q_i$.

For all $i \in \Delta$. (M Γ T) \cap (T Γ M) $\subseteq \bigcap_{i \in \Delta} Q_i = T$. This shows that T is a quasi-ideal of M.

(7) The set of all quasi-ideals of M forms a Moore family and hence a complete lattice(see Birkhoff[1]).

(8) If O is a quasi-ideal of M, then $O^{2} = O \Gamma O \subseteq O$.

Proof. As Q is a quasi-ideal of M,(MIX) \cap (XIM) \subseteq Q. We have Q² = QIQ \subseteq QIM. Hence Q² = QIQ \subseteq (MIQ) \cap $(X\Gamma M) \subseteq Q$. Thus $Q^2 = Q\Gamma Q = Q$.

(9) For each nonempty subset X of M, $(M\Gamma Q) \cap (X\Gamma M)$ is a quasi-ideal of M.

Proof. M Γ (M Γ X) \cap (X Γ M) Γ M = (M Γ M) Γ X) \cap X Γ (M Γ M)

Therefore, $(M\Gamma X) \cap (X\Gamma M)$ is a quasi-ideal of M.

If M has an identity element 1, then every quasi-ideal of M is expressed as an (10)intersection of a left ideal and a right ideal of M.

Proof. Let M be a F-seminear ring with an identity element 1. Let Q be a guasi-ideal of M. Then (MFQ) is a left ideal and (QFM) is a right ideal of M(see result 3.1). As M contain an identity element 1, by result (3.2) we have $(Q)_1 = M \ \Gamma \ Q$ and $(Q)_{1r} = Q \ \Gamma M$. Therefore $Q \subseteq (Q)_1 = M \ \Gamma \ Q$ and $Q \subseteq (Q)_r = Q \ \Gamma M \ imply \ Q \subseteq (M \ \Gamma Q) \cap$ $(Q\Gamma M)$. But Q being a quasi-ideal of M, $(M\Gamma Q) \cap (Q\Gamma M) \subseteq Q$. Therefore $Q = (M\Gamma Q) \cap (Q\Gamma M)$. Thus every quasiideal of M is an intersection of a left ideal and a right ideal of M.

Intersection of a right ideal and a left ideal of M is a quasi-ideal of M. (11)

Proof. Let R be a right ideal and L be a left ideal of M. Then $R \cap L$) is a subsemigroup of (M, +).

Further M Γ (R \cap L) \cap ((R \cap L) Γ M) \subseteq (M Γ L) \cap (R Γ M) \subseteq L \cap R. Hence R \cap L is a quasi-ideal of M.

Recall that an element e of M is an idempotent elements in M. We obtain quasi-ideals in M. Now we prove the following.

Theroem 3.4. Let L be a left ideal of M. Then for any idempotent elements e of M, eL is a quasi-ideal of M.

Proof. First we prove that $e\Gamma L = L \cap (e\Gamma M)$. We know $(e\Gamma M) + (e\Gamma M) = e\Gamma(M+M) \subseteq e\Gamma M$. Hence $e\Gamma M$ is a subsemigroup of (M, +). As $(e\Gamma M)\Gamma M = e\Gamma(M\Gamma M) \subseteq e\Gamma M$, $e\Gamma M$ is a right ideal of M. As $e \in M$ and L is left ideal of M, eL \subseteq L. Further eL \subseteq eL. These will imply eL \subseteq LO (eLM). For the reverse inclusion let a \in LO (eГM)..

Then $a = \sum_{i=1}^{n} e \alpha_i x_i$ for $x_i \in M$, $\alpha_i \in \Gamma$. Thus $a = \sum_{i=1}^{n} e^2 \alpha_i x_i = \sum_{i=1}^{n} (e\alpha e) \alpha_i x_i = e\alpha \sum_{i=1}^{n} e \alpha_i x_i = e\alpha a \in e\Gamma$. This shows that $L \cap (e\Gamma M) \subseteq e\Gamma L$. Hence $L \cap (e\Gamma M) = e\Gamma L$.

As L is a left ideal and eFM is a right ideal of M we get eFL is a quasi-ideal of M(see Property (11)).

As in Theorem 3.1.3 we can prove the following therorem.

Theorem 3.5. Let R be a right ideal. Then for any idempotent elements e of M. RIe is a guasi-ideal of M. Theorem 3.6. Let R be right ideal and L be a left ideal of M. Then for any idempotent elements e, f of M, eFMFf is a quasi-ideal of M.

Proof. First we prove that , $e\Gamma M\Gamma f = (e\Gamma M) \cap (M\Gamma e)$.

 $e\Gamma M\Gamma f = (e\Gamma M)\Gamma f \subseteq e\Gamma M$ and $e\Gamma M\Gamma f = e\Gamma (M\Gamma f) \subseteq M\Gamma e$. Thus

 $e\Gamma M \Gamma f \subseteq e\Gamma M \cap (M\Gamma e)$. Let $a \in (M\Gamma e) \cap (e\Gamma M)$

Then a = $\sum_{i=1}^{n} x_i \alpha_i f = \sum_{i=1}^{n} x_i \alpha_i (f \alpha f) = \sum_{i=1}^{n} (x_i \alpha_i f) \alpha f = \sum_{i=1}^{n} (e \beta_i y_i) \alpha f$

Thus a = αf , for all $\alpha \in \Gamma$. As a $\in e\Gamma M$, $\alpha \in \Gamma \implies$ a = $a\alpha f \in e\Gamma M\Gamma f$.

We get (eГM) \cap (MГe) \subseteq eГMГf. Thus (eГM) \cap (MГe) = eГMГf. As MГf is a left ideal and eГM is a right ideal of M we get $(e\Gamma M) \cap (M\Gamma e) = e\Gamma M\Gamma f$ is a quasi-ideal of M(see property (11)).

Intersection of a quasi-ideal and a sub a Γ -seminear ring of M is a quasi-ideal of that a sub Γ -seminear ring of M. We prove that in the following theorem.

Theorem 3.7. If Q is a quasi-ideal and T is a sub Γ -seminear ring of M the Q \cap T is a quasi-ideal of T.

Proof. As $Q\cap T$ is a subsemigroup of (M, +) and $Q\cap T$ is a subsemigroup of (T, +). Further,

 $\mathsf{T}\Gamma(\mathsf{T} \cap Q) \cap (\mathsf{T}\Gamma Q) \mathsf{\Gamma}\Gamma \subseteq (\mathsf{T}\Gamma Q) \cap (\mathsf{Q}\Gamma T) \subseteq (\mathsf{M}\Gamma Q) \cap (\mathsf{Q}\Gamma M) \subseteq \mathsf{Q}.$

And $T\Gamma(T \cap Q) \cap (T \cap Q)\Gamma \subseteq (T\Gamma T) \cap (T\Gamma T) \subseteq T \cap T \subseteq T$.

This implies $T\Gamma(T \cap Q) \cap (T \cap Q)\Gamma T \subseteq Q \cap T$. This shows that $Q \cap T$ is a quasi-ideal of T.

Definition 3.8. A Γ -seminear ring M is said to be a quasi-simple Γ -seminear ring if M is unique quasi-ideal of M, i.e., M has no proper quasi-ideal.

A characterization of quai-simple Γ -seminear ring is given in the following theorem.

Theorem 3.9. If M is a Γ -seminear ring, then M is quasi-simple Γ -seminear ring if and only if (M Γ a) \cap (a Γ MT) = M, for all a \in M.

Proof. Suppose M is a quasi-simple Γ -seminear ring. For any $a \in M$. (MГa) and (aГM) are left and right ideals of M respectively. Therefore (MГa) \cap (aГM) is a quasi-ideal of M(see property(11)). Further (MГa) $\subseteq M$ and (aГM) $\subseteq M$ imply (MГa) \cap (aГM) $\subseteq M$. As M is a quasi-simple Γ -seminear ring , M = (MГa) \cap (aГM).

Conversely, suppose that , $M = (M\Gamma a) \cap (a\Gamma M)$. Let Q be quasi-ideal of M. For any $q \in Q$, by assumption we have, $M = (M\Gamma q) \cap (q\Gamma M) \subseteq (M\Gamma Q) \cap (Q\Gamma M) \subseteq Q$. Therefore $M \subseteq Q$. Thus M = Q. Hence M is a quasi-simple Γ -seminear ring.

REFERENCES

[1] Birkhoff, G., Lattice theory, Providence RI: American Mathematical Society, 1948.

[2] Chinram, R., A note on quasi-ideals in Γ -semirings.Int. Math. Forum 26(3) (2008), 1253-1259.

[3] Chinram, R., On quasigammaideals in Γ -semigroups, Science Asia 32(2006), 351-353.

[4] Dutta, T.K., Sardar, S.k., Semi-prime-ideals and irreducible ideals of Γ-semirings, Novi Sad Jour. Math, 30(1) (2000), 97-108.

[5] Iseki, K., Quasi-ideals in semirings I, Southeaxt Asian Bull. Of Math. 19(1995), 49-54.

[6] M. K. Rao, Γ - semiring I, Southeast Asian Bulletin of Maths., 19(1995) 49-54.

[7] N. K. Saha, On I- seminear ring II, Bull. Calcutta Math. Soc. 79(6) (1987), 331-335.

[8] Bh. Satyanarayan, A Note on F-Near-Ring, Indian Journal of Mathematics, B. N. Prasad Birth Centenary Commemoration, Vol.41, No. 3 (1990), 427-433.

[9] Shabir, M., Ali, A., Batool, S., A note on quasi-ideals in semirings, Southeast Asian Bull. Of Math. 27(2004), 923-928.

[10] Steinfeld, O., On Ideals quotients and Prime idelas. Acta. Math.. Sci. Hungar 4(1953), 289-298.

[11] Steinfeld, O., Quasi-ideals in rings and semigroups, Budapest: Akademiaikiado, 1978.

[12] Steinfeld, O., Uher die quasideals, von halbgruppen. Publ. Math. Debrecen 4 (1956), 262-275.

S. J. Alandkar

Head and Associate Professor, Department of Mathematics & Statistics, Walchand College of Arts and Science, Solapur [M.S.]