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ABSTRACT.

In this paper, we introduce generalization of near subtraction semigroup as a -near subtraction semigroup and its
ideals and study some of its properties.
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1. INTRODUCTION

Schein B. M. [6] introduced the set theoretic subtraction ‘- which is analogous to subtraction algebra and it is
developed by Abbott J. C.[1]. Zelinka B. [7] discussed the problem of Schein relating the structure of multiplication in a
subtraction semigroup. Kim K. H. at el[3] studied an ideal of a subtraction semigroup. Dheena P.and his colleagues[2]
defined the concept of near - subtraction semigroups and discussed its properties. Pilz G. [3] defined near rings
and Satynarayan Bh.[4] introduced l-nearring and studied its various properties. In this paper, we introduce the
concept of M-near subtraction semigroup which is the generalization of near subtraction semigroup and discussed its
properties.

2. PRELIMINARIES
We recalled the following definitions and its projpes :

Definition 2.1. Let A be a nonempty set and subtraction ‘-’ israylg binary operation. Then an algebra (A, -) id $a
be a subtraction algebra if it satisfies the follagvaxioms:

Forany a, b, € A,

(Ya-(b-2a)= a;

(ila-(@a-b)=b-(b-a)

(i(a-b)y-c=(a-c)—h.

In (iii) omition of parentheses in expressionsha form (x — y) — z is allowed.

In the subtraction algebra, the following propesthold:

Pl.a-0=aand0-a=0.
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P2.a-(a-b) =0.

P3.(a-b)-b=(a-h).

P4. (a—b)- (b — a)= a — b where a—a = 0 where elemeoes not depend on the choice®a
P5.a-(a-(a-b)=a-h.

Definition 2.2. A non empty subset S of a subtraction algebra $4iid to be a subalgebra of N, if a €15 whenever a,
bes

Definition 2.3. A subtraction semigroup is an algebra (A, -, —-)hwitvo binary operations ‘~'and ‘.’that satisfieseth
following properties:

Forany a, b, € A,

1. (A, .) is a semigroup,

2. (A, -) is a subtraction algebra,

3.a(b-c)=ab-acand (a-b)c=ac- bc.

A subtraction semigroup is said to be multiplicatjvabelian if multiplication is commutative.

Definition 2.4. A non-empty set N together with the binary operai “—" and “.” is said to be a near-subtraction
semigroup if it satisfies the following:

1. (N, -) is a subtraction algebra.

2. (N, .) is a semigroup.

3. (a—b)c =ac - bc,for all a, bscN.

Itis clear that Oa = 0,for all@ N. Similarly we can define a near-subtraction ggmip (left).

We always take a near-subtraction semigroup meass inear-subtraction semigroup(right) only.

3.I-NEAR SUBTRACTION SEMIGROUP.

Definition 3.1. Let (N, - ) be a near-subtraction semigroup Bre o, f, ..} be a nonempty set of operatorhen N is
said to be &-near subtraction semigroup, if there exists a rnmgppN xI" x N — N (the image of (aq, b) is denoted by
aob), satisfying the following conditions:

1. (N,a) is a semigroupy € T’

2. (N, -) is a subtraction algebra,

3. (a — byic = auc — huc (right distributive law),

4. (aub)Bc = au(bpc) for all a, b, = M ando, B € T.

In practice we called simplyrnear subtraction semigroup’ instead of ‘rifhhear subtraction semigroup’ . Similarly
we can define &-near subtraction semigroup (left). It is cleartthea = O,for all &€ N anda € T'.

Example 3.2. Let N = {0, 1, 2, 3, 4, 5} in which ‘-’ and € I" are defined by
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It is easily verified that N is B-near subtraction semigroup.

In this paper, we denote the set of all non-zeemehts of N i.e., N=N - {0} and T denotes the set of all idempotent
elements of T (€ T if and only if £ =tat=t) and V denotes the set of all nilpotent eleraaitN (a€ V if and only if & =
acacao, ... k times= 0 for some positive integer k).An idéaf N is said to be nil if every element of Nngdpotent.
Further N is called a nil- near subtraction semigroup if every element @ Nilpotent.

In a rightI’- near subtraction semigroup NyeD= 0 for all a&& N. But ax0 need not be equal to 0, foed\. So there is a
need to define the following:

Definition 3.3. (i) The set {ac N/ao0 = 0} is called the zero-symmetric part of N asdienoted by NO.

(i) A right I'- near subtraction semigroup N is said to be zgmnsetric if N = NO.

Example 3.2. verifies that (N,®) for o € T' is a zero symmetric righit- near subtraction semigroup i.e., N = NO.
Now we introduce the ideals bfnear subtraction semigroup.

Definition 3.4. Let (N,—,a) for a € I be aI'-near subtraction semigroup. A non empty subséi is called
(i) a left ideal if | is a subalgebra of (N,-) aad — an(a’ — i) € | for all a, d€ N and i€ |
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(ii) aright ideal if | is a subalgebra of (N,-)&n'N < |

(i) an ideal if | is both a left ideal and a rigideal

Proposition 3.5. Let | € N. Then the following are equivalent.
(i) Forallae l,be N, a - be |

(ila<bandbel = acl.

Proof. (i) = (ii): Suppose & band be |. Thena-b=0.Nowa=a—-0=a- (a-b)=( - a)e | Therefore & I.
(i) = (i): Letae land be N. Now (a-b) -a=6> (a-b)<a. Hence (a- & I.

Proposition 3.6. (i) Suppose N is a zero symmetFimear subtraction semigroup and | is a left idéaMl guch that a —b
for every a, b= N Then the following are equivalent:

() NIl < |

(i) aci—ao(a—i) € | foralla,ae N,a e and i€ I.

Proof. (i)=(ii) Leta, d€ N,a € " and i€ I. By (i) aui€ I. Since | is a left ideal of N we have fored and 4€ N, a- &
€ N and ai—ao(a—i) €| foralla, 4e N,a € " and i€ I.

(i)=()If N is a zero-symmetri€-near subtraction semigroup and | is a left idéal othen for i€ | and ae N,
we have ai—aa(0-i) = ai-0 = avi € I. Thatis N'l < I.

Definition 3.7. If A,B € N, al’-near subtraction semigroup, then

()A-B={a—-b/ac A beB}

(i) AB or AaB = {aab / a€ A, b € B}

(iii) If a € N then Na or Na = {baa/b€ N}. We say that a subset M of N which is closedem'-" and fora € I', N['M
c M is an N-system. If, in addition, MN c M then M is called an invariant N-system. Obviou$ty,every ac N, Na is
an N-system and is also called a Principal N-system

Proposition 3.8. (i) If N is aT'-near subtraction semigroup then the conceptsfideals and ideals of N coincide with
N-systems of N and invariant N-systems respectively

(ii) N is zero symmetric if and only if every lafteal of N is an N-system of N.

(But an N-system of N need not be a left ideal o deneral).

(iii) Ng is a left ideal of N, but not necessarily an idefaN.

Definition 3.9. Let N be al-near subtraction semigroup. We define the follawin

1. N is said to be B-near subtraction semigroup with identity if thesasts an elementé N, o € I" such that da = axl
= afor every & N.

2. An element u of N is said to be a unit if therésts an element& N, o € T such that uv = 1.

3. N is said to be left bipotent if Na = ffar all a€ N.

4. N is said to be subcommutative if Na = aN foaat N.

5. AT -subtraction semigroup N is said to be Von-Neumagular if for every & N, there exists k& N, a € I" such that
a = abaa.

6. A I'-near subtraction semigroup N is said to be Booieand only if &=ana= a for all a N.

7. An N-system A of N is called essential iffAB = {0} whenever B is any N-system of N, then BG3.

8. We say that, the element u is a right (left) zairasor, if there exists an elementa/0 in N,a € T such that wu = 0
(uav = 0).

9. N is said to have property P4 if for all idelatf N and for a, B N, a € ', avbe | = baae 1.

10. Anonempty subset A of N is called a multiplicatsystem if A is closed under multiplication.

11. AT -near subtraction semigroup N is said to be sirfpla = N for all a€ N.

Definition 3.10. An ideal | of N is called

(i) a prime ideal if for all ideals A B of N, ABI=AclorBcl.

(i) a semiprime ideal if for all ideals I' of Njal’=I'?C 1= 1" C .

(iii) a completely semiprime ideal if for any ah axa =& € | = a€ |.

(iv) a principal ideal if | = Na for some&aN.

(v) a primary ideal if abac € I, o € " and if the product of any two of a, b, ¢ is not,ithen the k power of the third
elementisin I.

(vi) a strictly prime ideal if for any two N-systes#\, B of N, ABcl=> AclorBcl.

(vii) N is called a strictly prim&-near subtraction semigroup if {O}is a strictly me ideal.

(viii) N is subdirectly irreducible if and only the intersection of all non-zero ideals of N is z@no.
Similar to Definition 3.10 we have the following
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Definition 3.11. (i) An N-system M of a near subtraction semigroujsNaid to be a prime N-system if AB ouB.c M
= Ac MorBc M, for all N-systems A, B of N.
(ii) An N-system M of N is said to be completelympe N-system ifabe M = ae M orbe M.
(iii) An N-system M of N is said to completely seprime N-system if a=aza € M = a€ M.
(iv) An N-system M of N is said to be primary N-syi if foro € I aobac € M and if the product of any two of a, b, cis
not in M, then the 'k power of the third element is in M.
(v) An N-system M of N is said to be maximal N-gystif it is maximal in the set of all non-zero Nsggms of N.
Now we discuss below the results farnear subtraction semigroups which are similairtg.

Proposition 3.12. N has no non-zero nilpotent elements if and oind§ Fana = 0= a =0 for alla&€ N, a € I".

Definition 3.13. A I'- near subtraction semigroup N is said to hingertion ofFactorsProperty [ IFP] for short - if for
a,binN, ab=0= aocob=0forallce N,a eT.

Proposition 3.14. If N is a zero symmetriE-near subtraction semigroup then the following d&ses are equivalent.
() N has IFP

(ii) For each & N, (0, a) is an ideal of N

(i) For each subset M of N, (0, M) is an idealf

Proof. (i) = (ii): For p,, pz € (0, @),a €T, (p, — p)oa = pea — poa = 0. Thereforep- p, € (0, a). Let b, be N and i€

(0, @). Then (bi — ba(b’ - i))aa = lmica—bu(b’ —i)aa = wO-ba(b’ —i)aa = O-tm(b’ —i)aa = 0. And aboa = 0 (by IFP).
Thus (0, a) is an ideal of N, for everga\.

In a similar fashion we can prove # (iii).

(i) = (i): Let a, be N, o € T such that @b = 0. Then & (0, b). Hence by (iii) @ € (0, b) for every & N. Thus acob

= 0 for every c= N.

Definition 3.15. We say that N has (IFP) if, (i) N has IFP and(ii)edb = 0= baa = 0, fora, ke N,a €T

Proposition 3.16. Let N be zero symmetric-near subtraction semigroup without non-zero népbelements. Then N
has &, IFP).

Proof. Suppose @ = 0 for some a, B N, o € T. Then (a) = ba(acb)oa = xOaa = 0 [since N = ). Since N has no
non-zero nilpotent elementsgd = 0. Also for any € N, (aunab)’ = (axnab) (anob) =axna(bea)inab =aunaOanab =
0. Consequently canab = 0.Thus N hast( IFP).

Definition 3.17. For a, be N, we define an N-homomorphism as a map f ~=N&lb satisfying f(ena — gaa) = f(qoa) —
f(cooa) and f(ucoa)= ru(f(coa)) for all re N, 0 € T.

Proposition 3.18. Let N be a'- near subtraction semigroup without non-zero népbelements. Ifa, 8 N,a € ' and t
€ T (That is, tis an idempotent of N), thexbat= aotab.

Proof. Proposition 3.16. demands that N haslEP). Let t be an idempotent in N. For every &\ o € I' since (a -
aot)at = 0, we have (a —od)abat = O so that @bat — antabat = 0. Also (at — apt = 0= (aot — ajubat = 0= aotabat -
aobat = 0. Hence abat = antabat. Since (&b - twbat)at = 0, we get dbo(tob -t abat) = 0 and dbata(teb — tbat) = 0.

It follows that (tb —tzbat)? = 0. Since N has no non-zero nilpotent elemengete(tb —obat) = 0. Hence (tbat — tob)
= 0. Thus &b =tobat. Similarly abot = antab.

Definition 3.19. N has strong IFP if and only if for all idealsfl N and for alla, b, @ N,a €T, awb € | = aunob € I.
Definition 3.20. Let N; and N be twol'- near subtraction semigroups. A map f;:-N N, is said to bé&-near subtraction
semigroup homomorphism if

(i) f(a = b) = f(a) - f(b)

(i) f(aob) = f(apf(b) for all a, be N3, 0 € T'.

Definition 3.21. A mapping f is said to belaisomorphism if f is one-one and onto.

Definition 3.22. The quotient-near subtraction semigroups N/l is set of cosEtsubere | is an ideal of B-near-ring.
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