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ABSTRACT.  

In this paper, we introduce generalization of near subtraction semigroup as a Γ-near subtraction semigroup and its 

ideals and study some of its properties. 
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1. INTRODUCTION 

Schein B. M. [6] introduced the set theoretic subtraction ‘-’ which is analogous to subtraction algebra and it is 

developed by Abbott J. C.[1]. Zelinka B. [7] discussed the  problem of Schein  relating the structure of multiplication in a 

subtraction semigroup. Kim K. H. at el[3] studied  an ideal of a subtraction  semigroup.  Dheena P.and his colleagues[2] 

defined the concept  of    near -       subtraction   semigroups and discussed its properties. Pilz G. [3] defined near rings 

and  Satynarayan Bh.[4] introduced Γ-nearring and studied its various properties. In this paper, we introduce the 

concept of Γ-near subtraction semigroup which is the generalization of near subtraction semigroup and discussed its 

properties. 

 
2. PRELIMINARIES 
We recalled the following definitions and its properties : 
 
Definition 2.1. Let A be a nonempty set and subtraction ‘-’ is a single binary operation. Then an algebra (A, −) is said to 
be a subtraction algebra if it satisfies the following axioms:  
For any a, b, c ∈ A, 
(i) a − (b − a) =  a; 
(ii) a − (a − b) = b − (b − a); 
(iii) (a − b) − c = (a − c) − b. 
In (iii) omition of parentheses in expressions of the form (x − y) – z is allowed. 
In the subtraction algebra, the following  properties hold: 
P1. a −0 = a and 0 − a = 0. 
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P2. a − (a − b)  =0. 
P3. (a − b) − b = (a − b). 
P4. (a−b)− (b − a)= a – b where a–a = 0 where element a does not depend on the choice of a∈ A. 
P5. a − (a − (a − b)) = a − b. 
 
Definition 2.2. A non empty subset S of a subtraction algebra N is said to be a subalgebra of N, if a − b ∈ S whenever a, 
b ∈ S. 
Definition 2.3. A subtraction semigroup is an algebra (A, ·, −) with two binary operations ‘-’and ‘.’that satisfies the 
following properties: 
For any a, b, c ∈ A, 
1. (A, .) is a semigroup, 
2. (A, - ) is a subtraction algebra, 
3. a(b − c) = ab -ac and (a − b)c = ac - bc. 
A subtraction semigroup is said to be multiplicatively abelian if multiplication is commutative.  
Definition 2.4. A non-empty set N together with the binary operations “–” and “.” is said to be a near-subtraction 
semigroup if it satisfies the following: 
1. (N, -) is a subtraction algebra. 
2. (N, .) is a semigroup. 
3. (a − b)c = ac − bc,for all a, b,c ∈ N. 
It is clear that 0a = 0,for all a ∈ N. Similarly we can define a near-subtraction semigroup (left). 
We always take a near-subtraction semigroup means it is a near-subtraction semigroup(right) only. 
 
3. Γ-NEAR SUBTRACTION SEMIGROUP. 
Definition 3.1. Let ( N, - ) be a near-subtraction semigroup  and Γ ={ α, β, ..} be a nonempty  set of operators.  Then N is 
said to be a Γ-near subtraction semigroup, if there exists a mapping N × Γ × N → N (the image of (a, α, b) is denoted by 
aαb), satisfying the following conditions: 
1. (N, α) is a semigroup, α ∈ Γ 
2. (N, - ) is a subtraction algebra, 
3. (a − b)αc = aαc – bαc (right distributive law), 
4. (aαb)βc = aα(bβc) for all a, b, c ∈ M and α, β ∈ Γ. 
In practice we called simply ‘Γ-near subtraction semigroup’  instead of ‘right Γ-near subtraction semigroup’ . Similarly 
we can define a Γ-near subtraction semigroup (left). It is clear that 0αa = 0,for all a ∈ N and α ∈ Γ. 
 
Example 3.2. Let N = {0, 1, 2, 3, 4, 5} in which ‘-’ and α ∈ Γ are defined by 
 

 - 0 1 2 3 4 5 α 0 1 2 3 4 5 β  0 1 2 3 4 5 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 3 4 3 1 1 0 1 4 3 4 0 1 0 0 4 3 4 0 
2 2 5 0 2 5 4 2 0 4 2 0 4 5 2 0 4 2 0 4 5 
3 3 0 3 0 3 3 3 0 3 0 3 0 0 3 0 3 0 3 0 0 
4 4 0 0 4 0 4 4 0 4 4 0 4 5 4 0 4 4 0 4 5 
5 5 5 0 5 5 0 5 0 0 5 0 0 5 5 0 0 5 0 0 5 

 
It is easily verified that N is a Γ-near subtraction semigroup. 
In this paper, we denote the set of all non-zero elements of N i.e.,  N∗ = N − {0} and T denotes the set of all idempotent 
elements of T (t ∈ T if and only if t2 =tαt=t) and V denotes the set of all nilpotent elements of N (a ∈ V if and only if ak = 
aαaαaα … k times= 0 for some positive integer k).An ideal I of N is said to be nil if every element of N is nilpotent. 
Further N is called a nil Γ- near subtraction semigroup if every element of N is nilpotent. 
In a right Γ- near subtraction semigroup N, 0αa = 0 for all a ∈ N. But aα0 need not be equal to 0, for a ∈ N. So there is a 
need to define the following: 
 
Definition 3.3. (i) The set {a ∈ N/aα0 = 0} is called the zero-symmetric part of N and is denoted by N0. 
(ii) A right Γ- near subtraction semigroup N is said to be zero symmetric if N =  N0. 
Example 3.2. verifies that (N,−, α) for α ∈ Γ  is a zero symmetric right Γ- near subtraction semigroup i.e., N =  N0.  
Now we introduce the ideals of Γ-near subtraction semigroup. 
 
Definition 3.4.  Let (N,−, α) for α ∈ Γ be a  Γ-near subtraction semigroup. A non empty subset I of N is called 
(i) a left ideal if I is a subalgebra of (N,−) and aαi − aα(a′ − i) ∈ I for all a, a′ ∈ N and i ∈ I 
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(ii) a right ideal if I is a subalgebra of (N,−) and  IΓN ⊆ I 
(iii) an ideal if I is both a left ideal and a right ideal 
Proposition 3.5. Let I ⊆ N. Then the following are equivalent. 
(i) For all a ∈ I, b ∈ N, a − b ∈ I 
(ii) a ≤ b and b ∈ I ⇒ a ∈ I. 
 
Proof. (i) ⇒ (ii): Suppose a ≤ b and b ∈ I. Then a − b = 0. Now a = a – 0 = a − (a − b) = b − (b − a) ∈ I Therefore a ∈ I. 
(ii) ⇒ (i): Let a ∈ I and b ∈ N. Now (a − b) − a = 0 ⇒ (a − b) ≤ a. Hence (a − b) ∈ I. 
 
Proposition 3.6. (i) Suppose N is a zero symmetric Γ-near subtraction semigroup and I is a left ideal of N such that a –b 
for every a, b ∈ N Then the following are equivalent: 
(i) NΓI ⊆ I  
(ii) aαi−aα(a′−i) ∈ I  for all a, a′ ∈ N, α ∈ Γ and i ∈ I. 
 
Proof. (i)⇒(ii) Let a, a′ ∈ N, α ∈ Γ and i ∈ I. By (i)  aαi∈ I. Since I is a left ideal of N we have for  a ∈ I and a′ ∈ N,  a- a′ 
∈ N  and aαi−aα(a′−i) ∈ I  for all a, a′ ∈ N, α ∈ Γ and i ∈ I. 

(ii)⇒(i)If N is a zero-symmetric Γ-near subtraction semigroup and I is a left ideal of N, then for i ∈ I and a ∈ N, 
we have aαi−aα(0−i) = aαi−0 = aαi ∈ I. That is NΓI ⊆ I. 
 
Definition 3.7. If A,B ⊆ N , a Γ-near subtraction semigroup,  then 
(i) A − B = {a – b / a ∈ A, b ∈ B} 
(ii) AB or AαB = {aαb / a ∈ A, b ∈ B} 
(iii) If a ∈ N then Na or Nαa = {bαa/b ∈ N}. We say that a subset M of N which is closed under ‘−’ and for α ∈ Γ,  NΓM 
⊂ M is an N-system. If, in addition,  MΓN ⊂ M then M is called an invariant N-system. Obviously, for every a ∈ N, Na is 
an N-system and is also called a Principal N-system. 
 
Proposition 3.8. (i) If N is a Γ-near subtraction semigroup then the concepts of left ideals and ideals of N coincide with 
N-systems of N and invariant N-systems respectively. 
(ii) N is zero symmetric if and only if every left ideal of N is an N-system of N. 
(But an N-system of N need not be a left ideal of N in general). 
(iii) N 0 is a left ideal of N, but not necessarily an ideal of N. 
 
Definition 3.9. Let N be a Γ-near subtraction semigroup. We define the following 
1. N is said to be a Γ-near subtraction semigroup with identity if there exists an element 1 ∈ N, α ∈ Γ such that  1αa = aα1 
=  a for every a ∈ N. 
2. An element u of N is said to be a unit if there exists an element v ∈ N, α ∈ Γ such that uαv = 1. 
3. N is said to be left bipotent if Na = Na2 for all a ∈ N. 
4. N is said to be subcommutative if Na = aN for all a ∈ N. 
5. A Γ-subtraction semigroup N is said to be Von-Neumann regular if for every a ∈ N, there exists b ∈ N, α ∈ Γ such that 
a = aαbαa. 
6. A Γ-near subtraction semigroup N is said to be Boolean if and only if a2=aαa= a for all a ∈ N. 
7. An N-system A of N is called essential if A ∩ B = {0} whenever B is any N-system of N, then B = {0}. 
8. We say that, the element u is a right (left) zero divisor, if there exists an element v ≠ 0 in N, α ∈ Γ such that vαu = 0 
(uαv = 0). 
9. N is said to have property P4 if for all ideals I of N and for a, b∈ N, α ∈ Γ, aαb∈ I ⇒ bαa∈ I. 
10. Anonempty subset A of N is called a multiplicative system if A is closed under multiplication. 
11. A Γ-near subtraction semigroup N is said to be simple if Na = N for all a ∈ N. 
 
Definition 3.10. An ideal I of N is called 
(i) a prime ideal if for all ideals A,B of N, AB ⊆ I ⇒ A ⊆ I or B ⊆ I. 
(ii) a semiprime ideal if for all ideals I’ of  N, I’ αI’ =I’ 2 ⊆ I ⇒ I’ ⊆ I. 
(iii) a completely semiprime ideal if for any a in N, aαa = a2 ∈ I ⇒ a ∈ I. 
(iv) a principal ideal if I = Na for some a ∈ N. 
(v) a primary ideal if aαbαc ∈ I, α ∈ Γ and if the product of any two of a, b, c is not in I, then the ktℎ power of the third 
element is in I. 
(vi) a strictly prime ideal if for any two N-systems A, B of N, AB ⊂ I ⇒ A ⊂ I or B ⊂ I. 
(vii) N is called a strictly prime Γ-near subtraction semigroup if {0}is a strictly prime ideal. 
(viii) N is subdirectly irreducible if and only if the intersection of all non-zero ideals of N is non zero. 
Similar to Definition 3.10 we have the following 
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Definition 3.11. (i) An N-system M of a near subtraction semigroup N is said to be a prime N-system if AB or AαB ⊂ M 
⇒ A ⊂ M or B ⊂ M, for all N-systems A, B of N. 
(ii) An N-system M of N is said to be completely prime N-system if aαb ∈ M ⇒ a ∈ M or b ∈ M. 
(iii) An N-system M of N is said to completely semiprime N-system if a2 =aαa ∈ M ⇒ a ∈ M. 
(iv) An N-system M of N is said to be primary N-system if for α ∈ Γ aαbαc ∈ M and if the product of any two of a, b, c is 
not in M, then the ktℎ power of the third element is in M. 
(v) An N-system M of N is said to be maximal N-system if it is maximal in the set of all non-zero N-systems of N. 

Now we discuss below the results for Γ- near subtraction semigroups  which are similar to ring. 
 
Proposition 3.12. N has no non-zero nilpotent elements if and only if a2 =aαa  = 0 ⇒ a = 0 for all a ∈ N, α ∈ Γ.  
 
Definition 3.13. A Γ- near subtraction semigroup N is said to have Insertion of Factors Property [ IFP] for short - if for 
a, b in N, aαb = 0 ⇒ aαcαb = 0 for all c ∈ N, α ∈ Γ. 
 
Proposition 3.14. If N is a zero symmetric Γ-near subtraction semigroup then the following assertions are equivalent. 
(i) N has IFP 
(ii) For each a ∈ N, (0, a) is an ideal of N 
(iii) For each subset M of N, (0, M) is an ideal of N. 
 
Proof. (i) ⇒ (ii): For p1, p2 ∈ (0, a), α ∈ Γ, (p1 − p2)αa = p1αa − p2αa = 0. Therefore p1 − p2 ∈ (0, a). Let b, b′ ∈ N and i ∈ 
(0, a). Then (bαi − bα(b′ − i))αa = bαiαa−bα(b′ −i)αa = bα0−bα(b′ −i)αa = 0−bα(b′ −i)αa = 0. And iαbαa = 0 (by IFP). 
Thus (0, a) is an ideal of N, for every a ∈ N. 
In a similar fashion we can prove (ii) ⇒ (iii). 
(iii) ⇒ (i): Let a, b ∈ N, α ∈ Γ such that aαb = 0. Then a ∈ (0, b). Hence by (iii) aαc ∈ (0, b) for every c ∈ N. Thus aαcαb 
= 0 for every c ∈ N. 
 
Definition 3.15.  We say that N has (∗, IFP) if, (i) N has IFP and(ii) aαb = 0 ⇒ bαa = 0, for a, b ∈ N, α ∈ Γ. 
 
Proposition 3.16.  Let N be zero symmetric Γ-near subtraction semigroup without non-zero nilpotent elements. Then N 
has (∗, IFP). 
 
Proof. Suppose aαb = 0 for some a, b ∈ N, α ∈ Γ. Then (bαa)2 = bα(aαb)αa = bα0αa = 0 [since N = N0]. Since N has no 
non-zero nilpotent elements, bαa = 0. Also for any n ∈ N, (aαnαb)2 = (aαnαb) (aαnαb)  =aαnα(bαa)αnαb =aαnα0αnαb = 
0. Consequently  aαnαb = 0.Thus N has (∗, IFP). 
 
Definition 3.17. For a, b ∈ N, we define an N-homomorphism as a map f : Na → Nb satisfying f(c1αa − c2αa) = f(c1αa) − 
f(c2αa) and f(nαcαa)= nα(f(cαa)) for all n∈ N, α ∈ Γ. 
 
Proposition 3.18. Let N be a Γ- near subtraction semigroup without non-zero nilpotent elements. If a, b ∈ N, α ∈ Γ and t 
∈ T (That is, t is an idempotent of N), then aαbαt= aαtαb. 
 
Proof. Proposition 3.16. demands that N has (∗, IFP). Let t be an idempotent in N. For every a, b ∈N, α ∈ Γ  since (a − 
aαt)αt = 0, we have (a − aαt)αbαt = 0 so that aαbαt − aαtαbαt = 0. Also (aαt − a)αt = 0 ⇒ (aαt − a)αbαt = 0 ⇒ aαtαbαt − 
aαbαt = 0. Hence aαbαt = aαtαbαt. Since  (tαb - tαbαt)αt = 0, we get  tαbα(tαb -t αbαt)  = 0 and  tαbαtα(tαb – tαbαt) = 0. 
It follows that (tαb –tαbαt)2 = 0. Since N has no non-zero nilpotent element we get (tαb –tαbαt) = 0. Hence (tαbαt – tαb) 
= 0. Thus tαb  =tαbαt. Similarly  aαbαt = aαtαb. 
 
Definition 3.19.  N has strong IFP if and only if for all ideals I of  N and for all a, b, n ∈ N, α ∈ Γ,  aαb ∈ I ⇒ aαnαb ∈ I. 
 
Definition 3.20. Let N1 and N2 be two Γ- near subtraction semigroups. A map f : N1 → N2 is said to be Γ-near subtraction 
semigroup homomorphism if 
(i) f(a − b) = f(a) − f(b) 
(ii) f(aαb) = f(a)αf(b) for all a, b ∈ N1, α ∈ Γ. 
 
Definition 3.21. A mapping f is said to be a Γ-isomorphism if f is one-one and onto.  
 
Definition 3.22. The quotient Γ-near subtraction semigroups N/I is set of cosets of I where I is an ideal of a Γ-near-ring. 
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