

Indian Streams Research Journal

ISSN No : 2230-7850

Impact Factor : 4.1625 (UIF) [Yr. 2016]

A NOTE ON Γ –NEAR SUBTRACTION SEMIGROUPS

Dr. S. J. Alandkar Head, Dept. of Mathematics and Statistics, Walchand College of Arts and Science, Solapur, Maharashtra, INDIA.

ABSTRACT.

In this paper, we introduce generalization of near subtraction semigroup as a Γ -near subtraction semigroup and its ideals and study some of its properties.

AMClassification. 06F35

1. INTRODUCTION

Schein B. M. [6] introduced the set theoretic subtraction '-' which is analogous to subtraction algebra and it is developed by Abbott J. C.[1]. Zelinka B. [7] discussed the problem of Schein relating the structure of multiplication in a subtraction semigroup. Kim K. H. at el[3] studied an ideal of a subtraction semigroup. Dheena P.and his colleagues[2] defined the concept of near - subtraction semigroups and discussed its properties. Pilz G. [3] defined near rings and Satynarayan Bh.[4] introduced Γ -nearring and studied its various properties. In this paper, we introduce the concept of Γ -near subtraction semigroup which is the generalization of near subtraction semigroup and discussed its properties.

2. PRELIMINARIES

We recalled the following definitions and its properties :

Definition 2.1. Let A be a nonempty set and subtraction '-' is a single binary operation. Then an algebra (A, -) is said to be a subtraction algebra if it satisfies the following axioms:

For any a, b, $c \in A$, (i) a - (b - a) = a; (ii) a - (a - b) = b - (b - a); (iii) (a - b) - c = (a - c) - b. In (iii) omition of parentheses in expressions of the form (x - y) - z is allowed. In the subtraction algebra, the following properties hold: P1. a - 0 = a and 0 - a = 0. P2. a - (a - b) = 0. P3. (a - b) - b = (a - b). P4. (a-b)-(b-a)=a-b where a-a=0 where element a does not depend on the choice of $a \in A$. P5. a - (a - (a - b)) = a - b.

Definition 2.2. A non empty subset S of a subtraction algebra N is said to be a subalgebra of N, if $a - b \in S$ whenever a, $b \in S$.

Definition 2.3. A subtraction semigroup is an algebra $(A, \cdot, -)$ with two binary operations '-'and '.' that satisfies the following properties:

For any a, b, $c \in A$,

1. (A, .) is a semigroup,

2. (A, -) is a subtraction algebra,

3. a(b - c) = ab -ac and (a - b)c = ac - bc.

A subtraction semigroup is said to be multiplicatively abelian if multiplication is commutative.

Definition 2.4. A non-empty set N together with the binary operations "–" and "." is said to be a near-subtraction semigroup if it satisfies the following:

1. (N, -) is a subtraction algebra.

2. (N, .) is a semigroup.

3. (a - b)c = ac - bc, for all $a, b, c \in N$.

It is clear that 0a = 0, for all $a \in N$. Similarly we can define a near-subtraction semigroup (left).

We always take a near-subtraction semigroup means it is a near-subtraction semigroup(right) only.

3. F-NEAR SUBTRACTION SEMIGROUP.

Definition 3.1. Let (N, -) be a near-subtraction semigroup and $\Gamma = \{\alpha, \beta, ...\}$ be a nonempty set of operators. Then N is said to be a Γ -near subtraction semigroup, if there exists a mapping $N \times \Gamma \times N \rightarrow N$ (the image of (a, α, b) is denoted by a αb), satisfying the following conditions:

1. (N, α) is a semigroup, $\alpha \in \Gamma$

2. (N, -) is a subtraction algebra,

3. $(a - b)\alpha c = a\alpha c - b\alpha c$ (right distributive law),

4. $(\alpha\alpha b)\beta c = \alpha\alpha(b\beta c)$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$.

In practice we called simply ' Γ -near subtraction semigroup' instead of 'right Γ -near subtraction semigroup'. Similarly we can define a Γ -near subtraction semigroup (left). It is clear that $0\alpha a = 0$, for all $a \in N$ and $\alpha \in \Gamma$.

Example 3.2. Let N = $\{0, 1, 2, 3, 4, 5\}$ in which '-' and $\alpha \in \Gamma$ are defined by

-	0	1	2	3	4	5	α	0	1	2	3	4	5	β	0	1	2	3	4	5
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	3	4	3	1	1	0	1	4	3	4	0	1	0	0	4	3	4	0
2	2	5	0	2	5	4	2	0	4	2	0	4	5	2	0	4	2	0	4	5
3	3	0	3	0	3	3	3	0	3	0	3	0	0	3	0	3	0	3	0	0
4	4	0	0	4	0	4	4	0	4	4	0	4	5	4	0	4	4	0	4	5
5	5	5	0	5	5	0	5	0	0	5	0	0	5	5	0	0	5	0	0	5

It is easily verified that N is a Γ -near subtraction semigroup.

In this paper, we denote the set of all non-zero elements of N i.e., $N* = N - \{0\}$ and T denotes the set of all idempotent elements of T (t \in T if and only if $t^2 = t\alpha t = t$) and V denotes the set of all nilpotent elements of N (a \in V if and only if $a^k = a\alpha a\alpha a\alpha \dots k$ times= 0 for some positive integer k). An ideal I of N is said to be nil if every element of N is nilpotent. Further N is called a nil Γ - near subtraction semigroup if every element of N is nilpotent.

In a right Γ - near subtraction semigroup N, $0\alpha a = 0$ for all $a \in N$. But $a\alpha 0$ need not be equal to 0, for $a \in N$. So there is a need to define the following:

Definition 3.3. (i) The set $\{a \in N | a\alpha 0 = 0\}$ is called the zero-symmetric part of N and is denoted by N0. (ii) A right Γ - near subtraction semigroup N is said to be zero symmetric if N = N0. Example 3.2. verifies that $(N, -, \alpha)$ for $\alpha \in \Gamma$ is a zero symmetric right Γ - near subtraction semigroup i.e., N = N0. Now we introduce the ideals of Γ -near subtraction semigroup.

Definition 3.4. Let $(N, -, \alpha)$ for $\alpha \in \Gamma$ be a Γ -near subtraction semigroup. A non empty subset I of N is called (i) a left ideal if I is a subalgebra of (N, -) and $a\alpha i - a\alpha(a' - i) \in I$ for all a, $a' \in N$ and $i \in I$

(ii) a right ideal if I is a subalgebra of (N,-) and IΓN ⊆ I
(iii) an ideal if I is both a left ideal and a right ideal
Proposition 3.5. Let I ⊆ N. Then the following are equivalent.
(i) For all a ∈ I, b ∈ N, a - b ∈ I
(ii) a ≤ b and b ∈ I ⇒ a ∈ I.

Proof. (i) \Rightarrow (ii): Suppose $a \le b$ and $b \in I$. Then a - b = 0. Now $a = a - 0 = a - (a - b) = b - (b - a) \in I$ Therefore $a \in I$. (ii) \Rightarrow (i): Let $a \in I$ and $b \in N$. Now $(a - b) - a = 0 \Rightarrow (a - b) \le a$. Hence $(a - b) \in I$.

Proposition 3.6. (i) Suppose N is a zero symmetric Γ -near subtraction semigroup and I is a left ideal of N such that a –b for every a, b \in N Then the following are equivalent: (i) N $\Gamma I \subseteq I$

(ii) $a\alpha i - a\alpha(a' - i) \in I$ for all $a, a' \in N, \alpha \in \Gamma$ and $i \in I$.

Proof. (i) \Rightarrow (ii) Let a, a' \in N, $\alpha \in \Gamma$ and i \in I. By (i) a α i \in I. Since I is a left ideal of N we have for a \in I and a' \in N, a-a' \in N and a α i-a α (a'-i) \in I for all a, a' \in N, $\alpha \in \Gamma$ and i \in I.

 $(ii) \Rightarrow (i)$ If N is a zero-symmetric Γ -near subtraction semigroup and I is a left ideal of N, then for $i \in I$ and $a \in N$, we have $a\alpha i - a\alpha (0-i) = a\alpha i - 0 = a\alpha i \in I$. That is N $\Gamma I \subseteq I$.

Definition 3.7. If $A, B \subseteq N$, a Γ -near subtraction semigroup, then

(i) $A - B = \{a - b / a \in A, b \in B\}$

(ii) AB or $A\alpha B = \{a\alpha b / a \in A, b \in B\}$

(iii) If $a \in N$ then Na or N $\alpha a = \{b\alpha a/b \in N\}$. We say that a subset M of N which is closed under '-' and for $\alpha \in \Gamma$, N Γ M \subset M is an N-system. If, in addition, M Γ N \subset M then M is called an invariant N-system. Obviously, for every $a \in N$, Na is an N-system and is also called a Principal N-system.

Proposition 3.8. (i) If N is a Γ -near subtraction semigroup then the concepts of left ideals and ideals of N coincide with N-systems of N and invariant N-systems respectively.

(ii) N is zero symmetric if and only if every left ideal of N is an N-system of N.

(But an N-system of N need not be a left ideal of N in general).

(iii) N_0 is a left ideal of N, but not necessarily an ideal of N.

Definition 3.9. Let N be a Γ -near subtraction semigroup. We define the following

1. N is said to be a Γ -near subtraction semigroup with identity if there exists an element $1 \in N$, $\alpha \in \Gamma$ such that $1\alpha a = a\alpha 1$ = a for every $a \in N$.

2. An element u of N is said to be a unit if there exists an element $v \in N$, $\alpha \in \Gamma$ such that $u\alpha v = 1$.

3. N is said to be left bipotent if $Na = Na^2$ for all $a \in N$.

4. N is said to be subcommutative if Na = aN for all $a \in N$.

5. A Γ -subtraction semigroup N is said to be Von-Neumann regular if for every $a \in N$, there exists $b \in N$, $\alpha \in \Gamma$ such that $a = a\alpha b\alpha a$.

6. A Γ -near subtraction semigroup N is said to be Boolean if and only if $a^2 = a\alpha a = a$ for all $a \in N$.

7. An N-system A of N is called essential if $A \cap B = \{0\}$ whenever B is any N-system of N, then $B = \{0\}$.

8. We say that, the element u is a right (left) zero divisor, if there exists an element $v \neq 0$ in N, $\alpha \in \Gamma$ such that $v\alpha u = 0$ ($u\alpha v = 0$).

9. N is said to have property P4 if for all ideals I of N and for a, $b \in N$, $\alpha \in \Gamma$, $a\alpha b \in I \Rightarrow b\alpha a \in I$.

10. Anonempty subset A of N is called a multiplicative system if A is closed under multiplication.

11. A Γ -near subtraction semigroup N is said to be simple if Na = N for all a \in N.

Definition 3.10. An ideal I of N is called

(i) a prime ideal if for all ideals A,B of N, $AB \subseteq I \Rightarrow A \subseteq I$ or $B \subseteq I$.

(ii) a semiprime ideal if for all ideals I' of N, I' α I' =I'² \subseteq I \Rightarrow I' \subseteq I.

(iii) a completely semiprime ideal if for any a in N, $a\alpha a = a^2 \in I \Rightarrow a \in I$.

(iv) a principal ideal if I = Na for some $a \in N$.

(v) a primary ideal if $a\alpha b\alpha c \in I$, $\alpha \in \Gamma$ and if the product of any two of a, b, c is not in I, then the kth power of the third element is in I.

(vi) a strictly prime ideal if for any two N-systems A, B of N, $AB \subset I \Rightarrow A \subset I$ or $B \subset I$.

(vii) N is called a strictly prime Γ -near subtraction semigroup if {0} is a strictly prime ideal.

(viii) N is subdirectly irreducible if and only if the intersection of all non-zero ideals of N is non zero.

Similar to Definition 3.10 we have the following

Definition 3.11. (i) An N-system M of a near subtraction semigroup N is said to be a prime N-system if AB or $A\alpha B \subset M \Rightarrow A \subset M$ or $B \subset M$, for all N-systems A, B of N.

(ii) An N-system M of N is said to be completely prime N-system if $a\alpha b \in M \Rightarrow a \in M$ or $b \in M$.

(iii) An N-system M of N is said to completely semiprime N-system if $a^2 = a\alpha a \in M \Rightarrow a \in M$.

(iv) An N-system M of N is said to be primary N-system if for $\alpha \in \Gamma$ a $\alpha \in \alpha \in G$ and if the product of any two of a, b, c is not in M, then the kth power of the third element is in M.

(v) An N-system M of N is said to be maximal N-system if it is maximal in the set of all non-zero N-systems of N.

Now we discuss below the results for Γ - near subtraction semigroups which are similar to ring.

Proposition 3.12. N has no non-zero nilpotent elements if and only if $a^2 = a\alpha = 0 \Rightarrow a = 0$ for all $a \in N, \alpha \in \Gamma$.

Definition 3.13. A Γ - near subtraction semigroup N is said to have Insertion of Factors Property [IFP] for short - if for a, b in N, $a\alpha b = 0 \Rightarrow a\alpha c\alpha b = 0$ for all $c \in N$, $\alpha \in \Gamma$.

Proposition 3.14. If N is a zero symmetric Γ -near subtraction semigroup then the following assertions are equivalent. (i) N has IFP

(ii) For each $a \in N$, (0, a) is an ideal of N

(iii) For each subset M of N, (0, M) is an ideal of N.

Proof. (i) \Rightarrow (ii): For $p_1, p_2 \in (0, a), \alpha \in \Gamma$, $(p_1 - p_2)\alpha = p_1\alpha - p_2\alpha = 0$. Therefore $p_1 - p_2 \in (0, a)$. Let b, b' $\in N$ and $i \in (0, a)$. Then $(b\alpha i - b\alpha(b' - i))\alpha = b\alpha i\alpha a - b\alpha(b' - i)\alpha a = b\alpha 0 - b\alpha(b' - i)\alpha a = 0 - b\alpha(b' - i)\alpha a = 0$. And $i\alpha b\alpha a = 0$ (by IFP). Thus (0, a) is an ideal of N, for every $a \in N$.

In a similar fashion we can prove (ii) \Rightarrow (iii).

(iii) \Rightarrow (i): Let a, b \in N, $\alpha \in \Gamma$ such that $a\alpha b = 0$. Then $a \in (0, b)$. Hence by (iii) $a\alpha c \in (0, b)$ for every $c \in N$. Thus $a\alpha c\alpha b = 0$ for every $c \in N$.

Definition 3.15. We say that N has (*, IFP) if, (i) N has IFP and(ii) $a\alpha b = 0 \Rightarrow b\alpha a = 0$, for a, $b \in N$, $\alpha \in \Gamma$.

Proposition 3.16. Let N be zero symmetric Γ -near subtraction semigroup without non-zero nilpotent elements. Then N has (*, IFP).

Proof. Suppose $a\alpha b = 0$ for some a, $b \in N$, $\alpha \in \Gamma$. Then $(b\alpha a)^2 = b\alpha(a\alpha b)\alpha a = b\alpha 0\alpha a = 0$ [since $N = N_0$]. Since N has no non-zero nilpotent elements, $b\alpha a = 0$. Also for any $n \in N$, $(a\alpha n\alpha b)^2 = (a\alpha n\alpha b)(a\alpha n\alpha b) = a\alpha n\alpha (b\alpha a)\alpha n\alpha b = a\alpha n\alpha 0\alpha n\alpha b = 0$. Consequently $a\alpha n\alpha b = 0$. Thus N has (*, IFP).

Definition 3.17. For a, $b \in N$, we define an N-homomorphism as a map $f : Na \rightarrow Nb$ satisfying $f(c_1\alpha a - c_2\alpha a) = f(c_1\alpha a) - f(c_2\alpha a)$ and $f(n\alpha c\alpha a) = n\alpha(f(c\alpha a))$ for all $n \in N$, $\alpha \in \Gamma$.

Proposition 3.18. Let N be a Γ - near subtraction semigroup without non-zero nilpotent elements. If a, b \in N, $\alpha \in \Gamma$ and t \in T (That is, t is an idempotent of N), then $\alpha\alpha\beta\alpha t = \alpha\alpha\alpha\beta$.

Proof. Proposition 3.16. demands that N has (*, IFP). Let t be an idempotent in N. For every a, $b \in N$, $a \in \Gamma$ since $(a - a\alpha t)\alpha t = 0$, we have $(a - a\alpha t)\alpha bat = 0$ so that $a\alpha b\alpha t - a\alpha t\alpha b\alpha t = 0$. Also $(a\alpha t - a)\alpha t = 0 \Rightarrow (a\alpha t - a)\alpha b\alpha t = 0 \Rightarrow a\alpha t\alpha b\alpha t - a\alpha t\alpha b\alpha t = 0$. Hence $a\alpha b\alpha t = a\alpha t\alpha b\alpha t$. Since $(t\alpha b - t\alpha b\alpha t)\alpha t = 0$, we get $t\alpha b\alpha (t\alpha b - t\alpha b\alpha t) = 0$ and $t\alpha b\alpha t\alpha (t\alpha b - t\alpha b\alpha t) = 0$. It follows that $(t\alpha b - t\alpha b\alpha t)^2 = 0$. Since N has no non-zero nilpotent element we get $(t\alpha b - t\alpha b\alpha t) = 0$. Hence $(t\alpha b\alpha t - t\alpha b) = 0$. Thus t $\alpha b = t\alpha b\alpha t$. Similarly $a\alpha b\alpha t = a\alpha t\alpha b$.

Definition 3.19. N has strong IFP if and only if for all ideals I of N and for all a, b, $n \in N$, $\alpha \in \Gamma$, $a\alpha b \in I \Rightarrow a\alpha n\alpha b \in I$.

Definition 3.20. Let N_1 and N_2 be two Γ - near subtraction semigroups. A map $f : N_1 \rightarrow N_2$ is said to be Γ -near subtraction semigroup homomorphism if (i) f(a - b) = f(a) - f(b)(ii) $f(a\alpha b) = f(a)\alpha f(b)$ for all $a, b \in N_1, \alpha \in \Gamma$.

Definition 3.21. A mapping f is said to be a Γ -isomorphism if f is one-one and onto.

Definition 3.22. The quotient Γ -near subtraction semigroups N/I is set of cosets of I where I is an ideal of a Γ -near-ring.

REFERENCES

1. Abbott J.C., Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.

2. Dheena P. and Satheesh Kumar G., *On strong regular near-subtraction semigroups* Commun. Korean Math.Soc.22 (2007), pp. 323-330.

3. Kim K. H. Roh E. H. and Yon Y. H., A Note On Subtraction Semigroups, *Scientiae Mathematicae Japonicae Online*, Vol. 10, (2004), 393–401.

4. Pilz G., Near Rings, North-Holland, Amsterdam, 1983.

5. Satyanarayan Bh., A Note on Γ -Near-Ring,Indian Journal of Mathematics, B. N. Prasad Birth Centenary Commemoration Volume, vol.41, No. 3,(1990),427-433.

6. ScheinB. M., Difference Semigroups, Comm. in Algebra 20 (1992), 2153–2169.

7. Zelinka B., Subtraction Semigroups, Math. Bohemica, 120 (1995), 445–447.

Dr. S. J. Alandkar

Head, Dept. of Mathematics and Statistics, Walchand College of Arts and Science, Solapur, Maharashtra, INDIA.