

Indian Streams Research Journal

ON Zc SEPARATION AXIOMS AND g.Zc - CLOSED, Zc.g - CLOSED SETS.

¹ RM.Sivagama Sundari and ² A.P. Dhana Balan ^{1,2}Department of Mathematics; Alagappa Govt. Arts College, Karaikudi , Tamil Nadu; India.

ABSTRACT:

In this paper, a new kind of sets called Zc-generalized closed sets and generalized Zc-closed sets are introduced and studied in a topological spaces by using the concept of operation on topological space. Also Zc-separation axioms are introduced and discussed, and we also studied the basic characterizations of the Zc-regular, Zcnormal spaces.

Keywords: *Zc-open, Zc-limit point, Zc-exterior, Zc-regular, Zc-normal, Zc*-Regular, Almost Zc*-Regular, Zc.g-closed, g.Zc-closed.*

1.INTRODUCTION:

The concept of *Z*-open sets was introduced first by A.I.EL-Magharabi and A.M.Mubarki [1] in 2011. Throughout this paper (X,τ) or simply *X* represent topological space with topology τ . The end or omission of the theorem, proposition or lemma is denoted by \blacksquare .

2.PRELIMINARIES:

Definition 2.1 [2] : A subset A of a space X is said to be

i) Z-open set if $A \subseteq cl(\delta - int(A)) \cup int(cl(A))$,

ii) Z-closed set if $int(\delta - cl(A)) \cap cl(int(A)) \subseteq A$. The family of all Z-open (resp. Z-closed sets) subsets of a space (X, τ) will be denoted by ZO(X) (resp., ZC(X)).

Definition 2.2[4]: (i) A subset A of a space *X* is *Zc*-open`if for each $x \in A \in$ ZO(X), there exists a closed set F such that $x \in F \subset A$. A subset A of a space X Zc-closed if X-A is Zc-open. The is family of all Zc-open(resp. Zc-closed) subsets of a topological space (X,τ) is denoted by $ZcO(X,\tau)$ or ZcO(X) (resp. ZcC (X,τ) or ZcC(X)). (ii) A subset A of a space X is Zs-open if for each $x \in A \in ZO(X)$, there exists a semiclosed set *F* such that $x \in F \subset A$. A subset A of a space X is Zs-closed if X-A is Zs-open. The family of all Zsopen subsets of a topological space (X,τ) is denoted by $ZsO(X,\tau)$ or ZsO(X).

Definition 2.3[2]: Let *A* be a subset of a topological space (X,τ) . Then a point $p \in X$ is called a *Z* -limit point of a set $A \subseteq X$ if every *Z*-open set $G \subseteq X$ containing *p* contains a point of A other than p. The set of all *Z*-limit points of *A* is called a *Z*-derived set of *A* and is denoted by *Z*-d(A).

Definition 2.4[5]: A subset A of a topological space (X,τ) is said to be (i) δ -closed if $A = \delta$ - cl(A), where δ - $cl(A) = \{x \in X : A \cap int(cl(U)) \neq \emptyset, U \in \tau \text{ and } x \in \tau\}$ and its complement is δ -open.

(ii) θ -open if for each $x \in A$, there exists an open set *G* such that $x \in G \subset cl(G)$ $\subset A$ and its complement is θ -closed. **Definition 2.5:[3]** Let A be a subset of a topological space (X,τ) . A is said to be θ -regular open in X iff $A = \theta$ -int $(\theta$ -cl(A)).

Definition 2.6:[1] A space X is called θ - T_2 space iff for each $x \neq y$ in X there exist disjoint θ -open sets U, V such that $x \in U, y \in V$.

3.BASIC PROPERTIES OF ZC-OPEN SETS:

Definition 3.1: Let (X, τ) be a topological space. Then

(i) the union of all *Zc*-open sets contained in *A* is called the *Zc-interior* of *A* and is denoted by *Zc* -*Int*(*A*). (ii) the intersection of all *Zc*-closed sets containing *A* is called the *Zc-closure* of *A* and is denoted by *Zc-cl*(*A*).

Result 3.2: If *A* is *Zc*-closed then Zc-cl(A) = A.

Propositon 3.3: Let A be an Zc-open subset of X. Then $x \in Zc-cl(A)$ iff for any Zc-open set U containing x, $U \cap A \neq \emptyset$.

Proof: Let $x \in Zc\text{-}cl(A)$. Suppose that $U \cap A = \emptyset$. Suppose that $U \cap A = \emptyset$ for some Zc-open set U which contains x. Then (X-U) is a Zc-closed set and $A \subseteq (X-U)$ and so $Zccl(A) \subseteq Zc\text{-}cl(X-U)$. Thus $Zc\text{-}cl(A) \subseteq X-U$, by result 3.2 and so $x \in (X-U)$ which is a contradiction. Hence $U \cap A \neq \emptyset$. Conversely, Suppose that there exists an Zc-openset U containing x with $U \cap A = \emptyset$. Then $A \subseteq (X-U)$ and (X-U) is Zc-closed with $x \notin (X-U)$. Hence $x \notin Zc\text{-}cl(A)$, a contradiction \blacksquare .

Definition 3.4: Let (X, τ) be a topological space. Then

(i) the union of all *Zs*-open sets contained in *A* is called the *Zs-interior* of *A* and is denoted by *Zs- Int(A)*.
(ii) the intersection of all *Zs*-closed sets containing *A* is called the *Zs-closure* of *A* and is denoted by *Zs- cl(A)*.

Proposition 3.5: Let A be any subset of a space X. If a point x is in the Zs- Int(A), then there exists a semi closed set F of X containing x such that $F \subseteq A$.

Proof: Suppose that $x \in Zs$ -*Int*(*A*), then there exists a *Zs*-open set *U* of *X* containing *x* such that $U \subseteq A$. Since *U* is a *Zs*-open, by definition there exists a semi closed set *F* containing *x* such that *F* is the union of semiclosed and *Z*-open by proposition 4.3 of [2].

Hence $x \in F \subseteq A$ \blacksquare .

Theorem 3.6: Let *A* be a subset of a space *X*. Then

- (i) $X \setminus Zc Int(A) = Zc cl(X \setminus A)$
- (ii) $X \setminus Zc cl(A) = Zc Int(X \setminus A)$

Proof: For (i): For any point $x \in X$, if $x \in X \setminus Zc$ - $Int(A) \Leftrightarrow x \notin Zc$ - $Int(A) \Leftrightarrow$ for each $B \in ZcO(X)$ containing x, we have $A \cap B = \emptyset \Leftrightarrow x \in B \subseteq (X \setminus A) \Leftrightarrow x \in Zc$ - $cl(X \setminus A)$.Similarly we can prove (ii) \blacksquare .

Theorem 3.7: If A and B are any subsets of X then the following properties holds:

- (i) If $A \subseteq B$ then Zc- $Int(A) \subseteq Zc$ Int(B) and Zc- $cl(A) \subseteq Zc$ -cl(B)
- (ii) $Zc Int(A) \cup Zc Int(B) \subseteq Zc Int(A \cup B)$
- (iii) $Zc-Int(A) \cap Zc-Int(B) \subseteq Zc-Int(A \cap B)$
- (iv) $Zc\text{-}cl(A) \cup Zc\text{-}cl(B) \subseteq Zc\text{-}cl(A \cup B)$
- (v) $Zccl(A \cap B) \subseteq Zc-cl(A) \cap Zc-cl(B)$

Definition 3.8: Let *A* be a subset of a topological space (X,τ) . Then a point $p \in X$ is called a Zc-limit point of a set $A \subseteq X$ if every *Zc*-open set $G \subseteq X$ containing *p* contains a point of A other than p. The set of all *Zc*-limit points of *A* is called a *Zc*-derived set of *A* and is denoted by *Zc*-*d*(*A*).

Proposition 3.9: A subset A of a space X is Zc-closed iff it contains the set of all limit points. **Proof:** Assume that A is Zc-closed and if possible that x is a Zc-limit point of A which belongs to $X \setminus A$, then $X \setminus A$ is Zc-open set containing the Zc-limit point of A, therefore $A \cap X \setminus A \neq \emptyset$ which is a contradiction. Conversely, assume that A contains the set of its Zc-limit points. For each $x \in X \setminus A$, there exists a Zc-open set U containing x such that $A \cap U = \emptyset$ then $x \in U \subset X \setminus A$. Thus $X \setminus A$ is Zc-open and hence A is Zc-closed \blacksquare .

Propositon 3.10: Let $A \subseteq (X,\tau)$. A point $x \in X$ is said to be in Zc-cl(A) iff for each Zc-open set U containing x such that $U \cap A \neq \emptyset$.

Proof: Let $x \in Zc\text{-}cl(A)$ and suppose $U \cap A = \emptyset$, for some Zc-open set $U, x \in U$. Clearly $X \setminus U$ is Zc-closed and $A \subseteq (X \setminus U)$, thus $Zc\text{-}cl(A) \subseteq (X \setminus U)$ which then implies that $x \in (X \setminus U)$, a contradiction. Therefore $U \cap A \neq \emptyset$. Conversely, Suppose $U \cap A = \emptyset$ where U is Zc-open with $x \in U$ then $A \subseteq (X \setminus U)$ and $(X \setminus U)$ is Zc-closed with $x \notin (X \setminus U)$. Therefore $x \notin Zc\text{-}cl(A)$, a contradiction \blacksquare .

Definition 3.11: Let (X,τ) be a topological space and $A \subseteq X$. Then the *Zc*-boundary of *A* is defined by *Zc*-*b*(*A*) = *Zc*-*cl*(*A*) \cap *Zc*-*cl*((*X* \ *A*) and is denoted by *Zc*-*b*(*A*).

Theorem 3.12: Let $A \subseteq (X, \tau)$ then

(i) *A* is a *Zc*-clopen set iff $Zc-b(A) = \emptyset$

(ii) *A* is a *Zc*-closed set iff $Zc-b(A) \subseteq A$

(iii) *A* is a *Zc*-open set iff $A \cap Zc$ - $b(A) = \emptyset$

Lemma 3.13: Let *A* be a subset of (X, τ) then the following holds:

- (i) $Zc-b(A) = Zc-b(X \setminus A)$
- (ii) $Zc-b(A) = Zc-cl(A) \setminus Zc-Int(A)$
- (iii) $Zc-b(A) \cap Zc-Int(A) = \emptyset$
- (iv) $Zc-b(A) \cup Zc-Int(A) = Zc-cl(A) \blacksquare$.

Definition 3.14: Let $A \subseteq (X,\tau)$. Then the set $X \setminus Zc - cl(A)$ is called the *Zc*-exterior of *A* and is denoted by *Zc*-*ext*(*A*). A point $p \in X$ is called a *Zc*-exterior point of *A*, if it is a *Zc*-interior point of $X \setminus A$.

Lemma 3.15: If *A* and *B* are two subsets of (X, τ) , then

- (i) $Zc\text{-}ext(\emptyset) = X$ and $Zc\text{-}ext(X) = \emptyset$
- (ii) $Zc\text{-}ext(A) = Zc\text{-}int (X \setminus A)$
- (iii) $Zc\text{-}ext(A) \cap Zc\text{-}b(A) = \emptyset$
- (iv) $Zc\text{-ext}(A) \cup Zc\text{-}b(A) = Zc\text{-}cl(X \setminus A)$
- (v) If $A \subset B$ then $Zc\text{-}ext(B) \subset Zc\text{-}ext(A)$
- (vi) $Zc\text{-ext}(A \cup B) \subset Zc\text{-ext}(B) \cup Zc\text{-ext}(A)$
- (vii) $Zc\text{-}ext(A \cap B) \supset Zc\text{-}ext(A) \cap Zc\text{-}ext(B)$

4. Zc - Separation Axioms:

Definition 4.1: A topological space (X, τ) is said to be

- (i) $Zc-T_0$ if for each pair of distinct points x, y in X, there exists a Zc-open set U such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.
- (ii) (ii) $Zc-T_1$ if for each pair of distinct points x, y in X there exists two Zc-open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.(iii) $Zc-T_2$ if for each pair of distinct points x, y in X, there exists two disjoint Zc-open sets U and V containing x and y respectively.

Proposition 4.2: A topological space (X,τ) is $Zc-T_0$ iff for each pair of distinct points x, y of $X, Zc-cl({x}) \neq Zc-cl({y})$.

Proof: Let (X,τ) be a $Zc-T_0$ space and x, y be any two distinct points of X. Then there exists a Zc-open set U containing x or y, say x but not y. Then $X \setminus U$ is a Zc-closed set which does not contain x, but contains y. Since $Zc-cl(\{y\})$ is the smallest Zc-closed set containing y, $Zc-cl(\{y\}) \subseteq X \setminus U$ and hence $x \notin Zc-cl(\{y\})$.Consequently $Zc-cl(\{x\}) \neq Zc-cl(\{y\})$.Conversely, suppose $x, y \notin X, x \neq y$ and $Zc-cl(\{x\}) \neq Zc-cl(\{y\})$.Let p be a point of X such that $p \in Zc-cl(\{x\})$ but $p \notin Zc-cl(\{y\})$.We claim: $x \notin Zc-cl(\{y\})$.Suppose if $x \in Zc-cl(\{y\})$ then $Zc-cl(\{x\}) \subseteq Zc-cl(\{y\})$. We claim: $x \notin Zc-cl(\{y\})$.Suppose if $x \in Zc-cl(\{y\})$ then $Zc-cl(\{x\}) \subseteq Zc-cl(\{y\})$. We claim: $x \notin Zc-cl(\{y\})$.Suppose if $x \in Zc-cl(\{y\})$ then $Zc-cl(\{x\}) \subseteq Zc-cl(\{y\})$. We claim: $x \notin Zc-cl(\{y\})$. Suppose if $x \in Zc-cl(\{y\})$ then $Zc-cl(\{y\})$ to which y does not belong \blacksquare .

Proposition 4.3: A topological space (X,τ) is $Zc-T_1$ iff the singletons are Zc-closed.

Proof: Let (X,τ) be $Zc-T_1$ and x be any point of X. Suppose $y \in X \setminus \{x\}$, then $x \neq y$ and so there exists a Zc-open set U such that $y \in U$ but $x \notin U$. Consequently $y \in U \subseteq X \setminus \{x\}$ that is $X \setminus \{x\} = \bigcup \{U : y \in X \setminus \{x\}$ which is Zc-open. Conversely, Suppose $\{p\}$ is Zc-closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X \setminus \{x\}$. Hence $X \setminus \{x\}$ is a Zc-open set containing y but not x. Similarly $X \setminus \{y\}$ is a Zc-open set containing x but not y. Hence X is a Zc- T_1 space \blacksquare .

Proposition 4.4: The following statements are equivalent

- (i) X is $Zc-T_2$
- (ii) Let $x \in X$. For each $y \neq x$, there exists a Zc-open set U containing x such that $y \notin Zc-cl(U)$
- (iii) For each $x \in X$, $\bigcap \{Zc cl(U) : U \in ZcO(X) \text{ and } x \in U\} = \{x\}.$

Proof: (i) \Rightarrow (ii): Since *X* is *Zc*-*T*₂,by definition there exist disjoint *Zc*-open sets *U* and *V* containing *x* and *y* respectively. So $U \subseteq X \setminus V$. Therefore $Zc\text{-}cl(U) \subseteq X \setminus V$. So $y \notin Zc\text{-}cl(U)$.

(ii) \Rightarrow (iii) : If for some $y \neq x$, we have $y \in Zc\text{-}cl(U)$ for every Zc-open set U containing x which then contradicts

(ii). (iii) \Rightarrow (i): Let $x, y \in X$ and $x \neq y$. Then there exists *Zc*-open set *U* containing *x* such that $y \notin Zc\text{-}cl(U)$.Let $V=X \setminus Zc\text{-}cl(U)$ then $y \in V$ and $x \in U$ and also $U \cap V=\emptyset$.

Definition 4.5: A space *X* is called

(i) θT_2 -space iff for each $x \neq y$ in X there exists disjoint θ -open sets U, V such that $x \in U$ and $y \in V$. (ii) Zc-Regular space iff for each x in X and a θ -closed set F such that $x \notin F$, there exists disjoint Zc-open sets open sets U, V such that $x \in U$ and $F \subseteq V$.

(iii) Zc^* -Regular space iff for each $x \in X$ and a Zc-closed set F such that $x \notin F$, there exist disjoint sets U, V such that U is θ -open, V is Zc-open and $x \in U, F \subseteq V$.

(iv) Almost Zc^* -Regular iff for each x in X and F a Zc-regular closed set such that $x \notin F$, there exists disjoint sets U, V such that U is θ -open, V is Zc-open and $x \in U$, $F \subseteq V$.

(v) Zc-Normal space iff for every disjoint θ -closed sets F_1, F_2 there exists disjoint Zc-open sets U, V such that $F_1 \subseteq U, F_2 \subseteq V$.

Proposition 4.6: A space *X* is *Zc-regular* iff for every $x \in X$ and each θ -open set *U* in *X* such that $x \in U$, there exists an *Zc*-open set *V* such that $V \subseteq Zc-cl(V) \subseteq U$.

Proof: Let X be a Zc-regular space and $x \in X$. Let U be θ -open in X such that $x \in U$. Clearly \overline{U} is a θ -closed set and $x \notin \overline{U}$. Then there exist disjoint Zc-open sets V, W such that $x \in V$, $\overline{U} \subseteq W$. Hence $x \in V \subseteq Zc\text{-}cl(V) \subseteq Zc\text{-}cl(\overline{W}) \subseteq \overline{W} \subseteq U$. Conversely, let F be a θ -closed set such that $x \notin F$. Clearly \overline{F} is an θ -open set and $x \in \overline{F}$. Then there exists Zc-open set V such that $x \in V \subseteq Zc\text{-}cl(W) \subseteq \overline{F}$. Then $x \in V$, $F \subseteq Zc\text{-}cl(\overline{V})$ and thus V and $Zc\text{-}cl(\overline{V})$ are disjoint Zc-open sets. Hence X is a Zc-regular space \blacksquare .

Proposition 4.7:

(i) A space *X* is Zc^* -*regular* iff for every $x \in X$ and each *Zc*-open set *U* in *X* such that $x \in U$, there exists a θ -open set *V* such that $x \in V \subseteq Zc$ - $cl(V) \subseteq U$.

(ii) A space X is Almost Zc-regular iff for every $x \in X$ and each θ -regular open set U in X such that $x \in U$, there exists an Zc-open set V such that $x \in V \subseteq Zc-cl(\overline{V}) \subseteq U$.

(iii) A space *X* is *Almost Zc*-regular* iff for every $x \in X$ and each *Zc*-regular open set *U* in *X* such that $x \in U$, there exists a θ -open set *V* such that $x \in V \subseteq Zc$ - $cl(V) \subseteq U$.

Proof: Similar to Proposition 4.6

Proposition 4.8: A space *X* is called *Zc-normal* iff for every θ -closed set $F \subseteq X$ and each θ -open set *U* in *X* such that $F \subseteq U$ there exists an *Zc*-open set *V* such that $F \subseteq V \subseteq Zc$ - $cl(V) \subseteq U \blacksquare$.

Proposition 4.9: If *X* is both *Zc-normal* and θT_2 -space, then *X* is *Zc-regular*.

Proof: Let $x \in X$ and U be an θ -open set such that $x \in U$. Then $\{x\}$ is θ -closed subset of X. Thus there exists a Zcopen set V such that $\{x\} \subseteq V \subseteq Zc$ - $cl(V) \subseteq U$. By Proposition 4.8, $x \in V$

 \subseteq *Zc-cl*(*V*) \subseteq *U* and hence by Proposition 4.6, *X* is a *Zc*-regular space **I**.

5.Generalized Zc- closed sets:

Definition 5.1: A subset *A* of a topological space (X,τ) is a generalized *Zc*-closed (briefly *g.Zc*-closed) if *Zc*-*cl*(*A*) $\subseteq U$ whenever $A \subseteq U$ and *U* is open in (X,τ) . *A* is said to be generalized *Zc*-open (briefly *g.Zc*-open) if its complement $X \setminus A$ is generalized *Zc*-closed in (X,τ) . The family of all generalized *Zc*-closed(resp., generalized *Zc*-open) are denoted by *g.ZcC*(*X*) (resp., *g.ZcO*(*X*)).

Example 5.2: Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \tau^c = \{X, \emptyset, \{b, c\}, \{a, c\}, \{c\}\}$. The family of : Z-open sets $ZO(X) = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ Zc-open sets $ZcO(X) = \{\emptyset, X, \{b, c\}, \{a, c\}\}$ Zc-closed sets $ZcC(X) = \{\emptyset, X, \{a\}, \{b\}\}$. The collection of g.Zc-closed sets $g.ZcC(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{c, c, a\}\}$ g.Zc-open sets $g.ZcO(X) = \{\emptyset, X, \{b, c\}, \{c, b\}, \{c, c\}\}$.

Theorem 5.3: (i) The arbitrary intersection of any g.Zc-closed subsets of X is g.Zc-closed set of X. (ii) The arbitrary intersection of any g.Zc-open subsets of X need not be g.Zc-open of X.

Proof: (i) Let $\{A_i: i \in I\}$ be any collection of g.Zc-closed subsets of X such that $\bigcap_{i=1}^{\infty} A_i \subseteq H$ and H be Zc-open in X. Given A_i is a g.Zc-closed subset of X for each $i \in I$, we have Zc- $cl(A_i) \subseteq H$ for all $i \in I$. Hence $\bigcap_{i=1}^{\infty} Zc - cl(A_i) \subseteq H$ for all $i \in I$ and thus Zc- $cl(\bigcap_{i=1}^{\infty} A_i) \subseteq H$. Therefore $\bigcap_{i=1}^{\infty} A_i$ is a g.Zc-closed set of $X \equiv$. (ii) In example 5.2, the subsets $\{b,c\}, \{c,a\}$ of X are g.Zc-open but their intersection $\{c\}$ is not a g.Zc-open set of X

Remark 5.4: (i) The union of two *g.Zc*-closed subsets of *X* need not be a *g.Zc*-closed set of *X* as shown in example 5.2 in which the two subsets $\{b\}, \{a\}$ of *X* are *g.Zc*-closed subsets, but their union $\{a,b\}$ is not *g.Zc*- closed \blacksquare .

Theorem 5.5: A subset *A* of a space (X,τ) is *g.Zc*-closed iff for each $A \subseteq H$ and *H* is *Zc*-open there exists a *Zc*-closed set *F* of *X* such that $A \subseteq F \subseteq H$.

Proof: Assume that *A* is a *g.Zc*-closed subset of *X*, $A \subseteq H$ and *H* is a *Zc*-open set in *X*. Hence $Zc\text{-}cl(A)\subseteq H$. Put F = Zc-cl(A). Thus we get $A \subseteq F \subseteq H$. Conversely, assume $A \subseteq H$ and *H* is *Zc*-open set. Given, there exists a *Zc*-closed set *F* of *X* such that $A \subseteq F \subseteq H$. So $A \subseteq Zc\text{-}cl(A) \subseteq F$ and hence $Zc\text{-}cl(A) \subseteq H$. Therefore *A* is *g.Zc*-closed \blacksquare .

Theorem 5.6: Let *A* be a *g.Zc*-closed subset of (X,τ) . Then Zc-cl(A) - A does not contain any non-empty closed sets. **Proof:** Let *F* be a closed subset of Zc-cl(A) - A. Since X - F is open, $A \subseteq X - F$ and *A* is *g.Zc*-closed, it follows that Zc- $cl(A) \subseteq X - F$ and thus $F \subseteq X - Zc$ -cl(A). This implies that $F \subseteq (X - Zc$ - $cl(A)) \cap (Zc$ - $cl(A) - A) = \emptyset$ and hence $F = \emptyset$.

Corollary 5.7: Let *A* be a *g*.*Zc*-closed set. Then *A* is *Zc*-closed iff Zc-*cl*(*A*) – *A* is closed.

Proof: Let *A* be a *g.Zc*-closed set. If *A* is *Zc*-closed then by theorem 5.6, Zc- $cl(A) - A = \emptyset$ which is closed set. Conversely, let Zc-cl(A) - A be a closed set. Then by theorem 5.6, Zc-cl(A) - A does not contain any non-empty closed sets. Since Zc-cl(A) - A is closed subset of itself, then Zc- $cl(A) - A = \emptyset$ which implies that A = Zc-cl(A) and so *A* is *Zc*-closed \blacksquare .

Corollary 5.8: If A is open and a g.Zc-closed set of X, then A is g.Zc-closed in X. **Proof:** Let U be any open set of X so that $A \subseteq U$. Since A is open and a g.Zc-closed sets of X, we have Zc $cl(A) \subseteq A$. Then Zc- $cl(A) \subseteq A \subseteq U$ and so A is a g.Zc-closed set \blacksquare .

Theorem 5.9: For any element $p \in X$ of a space X, the set $X \setminus \{p\}$ is a *g.Zc*-closed or *Zc*-open. **Proof:** Suppose that $X \setminus \{p\}$ is not an *Zc*-open set. Then X is the only *Zc*-open set containing $X \setminus \{p\}$. Then $Zc\text{-}cl(X \setminus \{p\}) \subseteq X$ and thus $X \setminus \{p\}$ is *g.Zc*-closed in $X \blacksquare$.

Corollary 5.10: For a topological space (X,τ) , every singleton of X is either g.Zc-open or Zc-closed. **Proof:** Let (X,τ) be a topological space and $p \in X$. To prove that $\{p\}$ is either g.Zc-open or Zc-closed, enough to show $X \setminus \{p\}$ is either g.Zc-closed or Zc-open. Then the proof follows from theorem 5.9 \blacksquare .

Propositon 5.11: If A is a g.Zc-closed set of X such that $A \subseteq B \subseteq Zc\text{-}cl(A)$ then B is g.Zc-closed in X. **Proof:** Let U be an open set of X such that $B \subseteq U$. Then $A \subseteq U$. Since A is a g.Zc-closed set of X, we have $Zc\text{-}cl(A) \subseteq U$. Now $Zc\text{-}cl(B) \subseteq Zc\text{-}cl(Zc\text{-}cl(A)) = Zc\text{-}cl(A) \subseteq U$. Therefore B is g.Zc-closed in X \blacksquare .

Proposition 5.12: If *A* is both open and a *g*.*Zc*-closed subset of a topological space (X,τ) then *A* is *Zc*- closed. **Proof:** Assume that *A* is both an open and a *g*.*Zc*-closed subsets of *X*, then *Zc*-*cl*(*A*) \subseteq *A*. Hence *A* is *Zc*-closed **■**.

Theorem 5.13: If A is both open and a *g.Zc*-closed subsets of X and F is a δ -closed set of X, then $A \cap F$ is *g.Zc*-closed in X.

Proof: Let *A* be an open and a *g.Zc*-closed subsets of *X* and *F* be a δ -closed set in *X*. Then by proposition 5.12, *A* is *Zc*-closed. So, $A \cap F$ is *Zc*-closed and therefore $A \cap F$ is a *g.Zc*-closed set of X \blacksquare .

Theorem 5.14: (i) If A is δ -closed and B is a g.Zc-closed subset of a space X, then $A \cup B$ is g.Zc-closed. **Proof:** Suppose that $A \cup B$ is a subset of an Zc-open set say H, then $A \subseteq H$ and $B \subseteq H$. Given B is g.Zc-closed, then $Zc-cl(B) \subseteq H$ and hence $A \cup B \subseteq A \cup Zc-cl(B) \subseteq H$. But $A \cup Zc-cl(B)$ is a Zc-closed set. Hence there exist a Zc-closed set, $A \cup Zc-cl(B)$ of X such that $A \cup B \subseteq A \cup Zc-cl(B) \subseteq H$. By theorem 3.5, $A \cup B$ is g.Zc-closed. (ii) If A is an δ -open and B is a g.Zc-open subset of a space X, then $A \cap B$ is g.Zc-open. **Proof:** Obvious \blacksquare .

6. Zc-generalized closed sets:

Definition 6.1: A subset *A* of a topological space (X,τ) is a *Zc*- generalized closed (briefly *Zc.g*-closed) if *Zc-cl(A)* $\subseteq U$ whenever $A \subseteq U$ and *U* is *Zc*-open in (X,τ) . *A* is said to be *Zc*- generalized open (briefly *Zc.g*-open) if its complement $X \setminus A$ is *Zc*- generalized closed in (X,τ) . The family of all *Zc*- generalized closed(resp., *Zc*- generalized open) are denoted by *Zc.gC(X)* (resp., *Zc.gO(X)*).

Example 6.2: Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, \{a, b, c\}\}, \tau^c = \{X, \emptyset, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}, \{c, d\}, \{a, d\}, \{b, d\}, \{d\}\}$. The family of *Zc*-open sets *ZcO(X)* = $\{\emptyset, X, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{b, c, d\}\}$ *Zc*-closed sets *ZcC(X)* = $\{\emptyset, X, \{a, c\}, \{b, c\}, \{a, b\}, \{b\}, \{c\}, \{a\}\}$. The collection of all *Zc.g*-closed sets *Zc.gC(X)* = $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, \{c, d\}, \{a, b, c\}\}$ *Zc.g*-open sets *Zc.gO(X)* = $\{\emptyset, X, \{a, c, d\}, \{b, c\}, \{c, a\}, \{c, d\}, \{a, b, c\}\}$.

Propositon 6.3: The intersection of a Zc.g-closed set and a Zc-closed set is always Zc.g-closed \blacksquare .

Proposition 6.4: If *A* is *Zc*-open and *Zc.g*-closed then *A* is *Zc*-closed.

Proof: Suppose that *A* is *Zc*-open and *Zc.g*-closed. Since *A* is *Zc*-open and $A \subseteq A$ we have $Zc\text{-}cl(A) \subseteq A$, also $A \subseteq Zc\text{-}cl(A)$. Thus Zc-cl(A) = A. Hence *A* is *Zc*-closed \blacksquare .

Proposition 6.5: Let *A* be *Zc.g*-closed set in (*X*, τ) and *A* \subseteq *B* \subseteq *Zc-cl*(*A*), then *B* is a *Zc.g*-closed set in *X*.

Proof: Let *A* be a *Zc.g*-closed set such that $A \subseteq B \subseteq Zc$ -*cl*(*A*). Let *U* be a *Zc*-open set of *X* so that $B \subseteq U$. Since *A* is *Zc.g*-closed, we have Zc-*cl*(*A*) $\subseteq U$. Now Zc-*cl*(*A*) $\subseteq Zc$ -*cl*(*B*) $\subseteq Zc$ -*cl*(*Zc*-*cl*(*A*)) = *Zc*-*cl*(*A*) $\subseteq U$. Hence Zc-*cl*(*B*) $\subseteq U$ where *U* is *Zc*-open. Thus *B* is a *Zc.g*-closed in *X* \blacksquare .

Lemma 6.6: For a space (X, τ) the following are equivalent:

(i) Every subset of X is Zc.g-closed.

(ii) $ZcO(X,\tau) = ZcC(X,\tau)$

Proof: (i) \Rightarrow (ii): Let $U \in ZcO(X,\tau)$. Then by hypothesis, U is Zc.g-closed which implies that Zc- $cl(U) \subseteq U$, so Zc-cl(U) = U. Hence U will be in a Zc-closed set. Also let $V \in ZcC(X,\tau)$. Then $X - V \in ZcO(X,\tau)$. Hence by hypothesis, X - V is Zc.g-closed and then $X - V \in ZcC(X,\tau)$. Thus $V \in ZcO(X,\tau)$, then we have $ZcO(X,\tau) =$

 $ZcC(X,\tau)$. (ii) \Rightarrow (i) : Let $A \subseteq (X,\tau)$ such that $A \subseteq U$ where $U \in ZcO(X,\tau)$. Then $U \in ZcC(X,\tau)$ and hence $Zc-cl(U) \subseteq U$ which implies A is Zc.g-closed.

The following example illustrate the above lemma \blacksquare .

Example 6.7: Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}, \tau^c = \{X, \emptyset, \{b, c\}, \{a, c\}, \{c\}, \{a\}\}$. The family of *Zc*-open sets *ZcO(X)* = $\{\emptyset, X, \{b, c\}, \{a\}\}$ *Zc*-closed sets *ZcC(X)* = $\{\emptyset, X, \{a\}, \{b, c\}, \{c\}, \{a, b\}, \{c, c\}, \{c, a\}\}$

Proposition 6.8: A set *A* of a space *X* is *Zc.g*-closed iff $Zc-cl(A) \setminus A$ does not contain any non-empty *Zc*-closed set. **Proof:** proof is similar to Theorem 5.6

REFERENCES:

[1]. J. K. Kohli and A. K. Das, "A class of spaces containing all generalized absolutely closed(almost compact) spaces", Applied General Topology, Universidad Politécnica de Valencia, Vol. 7, No.2,2006, pp. 233-244.

[2]. A. I. EL-Magharabi and A. M. Mubarki, "Z-open sets and Z-continuity in topological spaces", Int. J. Math. Arch., 2 (10), (2011),1819-1827.

[3]. Raad Aziz Al-Abdulla, Ruaa Muslim Abed, "On Bc-open sets", IJSR,3(10),(2014).

[4]. RM.Sivagama Sundari, A.P.Dhanabalan, Zc-open sets and Zs-open sets in topological spaces, IJSR., **3**(5),(2016).

[5]. Velico, N.V, H-closed topological spaces. Amer. Math. Soc. Transl., 78, 103-118, (1968).