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ABSTRACT: - 

Fractional calculus developed only as the theoretical 
field of mathematics. Fractional differential equations play an 
important role in the study of various physical chemical and 
biological phenomenon’s many researchers are attracted from 
the field of theory methods and application of fractional 
differential equation. The research have developed arevarious 
method to obtain of techniques to obtained approximate 
solutions of both linear and nonlinear fractional differential and 
integral equations. In recent year we see that monograph’s 
Kalibas, Lakashminath [4], Podlibuny and Abbas [6-8], banas 
[10, 11] Darwish [12-13], Dhage [20-24] and B.D.Karande [1] 
and there references. In this paper we study the existence of locally attractive solution is of the following 
nonlinear quadratic volterra   integral equation of fractional order. 
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 1.1                             [ݏ݀ 

 
 In the space of real function defined continuous bounded or unbounded intervalsܴା. In(0,1)ߙ ݀݊ܽ ାܴ߳ݐ ݈݈ܽ ݎ݋݂
the next section we give some basic definition and theorem which are used in further in this paper.We proceed the 
generalization the results are obtained. 
 
PRELIMINARIES 
 Let ܮଵ(ܽ, ܾ)bethe lebesuge intergable function. On interval ( a, b) then let ݔ ∈ ,ܽ)ଵܮ ߙ ݀݊ܽ(ܾ > 0 be a 
fixed number of Riemann-Liouville fractional integral order ݐ(ݐ)ݔ ݊݋݅ݐܿ݊ݑ݂ ݂݋ ߙℎ݁݊ 
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Where Γ(ߙ)-does gamma function [Kalibus]. It may show that fractional integral space ܮଵ(ܽ, ܾ) into it self has 
some of the properties [see 10-12]. 

Letܺ =  be the space continuous bounded and let Ω be the subset of X. Let a mappingA:X→X on (ାܴ)ܥܤ
the operator consider the following equations namely  

 
(ݐ)ݔ =  2.2                                      (ݐ)(ݔ݌)

 
 ା.Below given different characterization of solution for the operator on ܴା. We need the followingܴ߳ݐ ݈݈ܽݎ݋݂
definitions in the sequel. 
 
2.1Definition:We say that the equation 2.2 are locally attractive if there exists an ݔ ∈ ݎ ݀݊ܽ( ାܴ)ܥܤ > 0 such 
that for all solutionݔ = ݕ ݀݊ܽ(ݐ)ݔ = ≤ ݐ ݎ݋݂   Ω(ݎ଴ݔ) ௥ܤ of equation 2.2belong (ݐ) ܶ. 
 

lim 
௧→ஶ

(ݐ)ݔ)   − ((ݐ)ݕ = 0                                      2.3                
 
2.2Defination: an operator P: X→X iscalled Lipschitz if there exist constant k such that ‖ݔ݌ − ‖ݕ݌ ≤
‖ܺ − ,ݔ ݈݈ܽ ݎ݋݂ ‖ܻ ∋ ݕ ܺ the constant is called Lipschitz constant of P on X. 
 
2.3Defination: [Dugundji and Granas] an operator Banach space X into itself is called compact subset of S. If 
any bounded set of X P(S) is relatively compact subset of X. If P is continuous and compact then it is called 
completely continuous on X. 
 We seek the solution of (1.1) in the space ܥܤ(ܴା ) is continuous and bounded real valued function 
defined on ܴା .Define a standard supremum norm‖. ‖ and multiplication “.”  In ܥܤ(ܴା) by 
 

‖ݔ‖ = :(ݐ)ݔ } ݌ݑܵ ݐ ∈ ܴା}, 
 

,ݔ) (ݐ)(ݕ = ݐ (ݐ)ݕ(ݐ)ݔ ∈ ܴା                     2.4 
 
Clearlyܥܤ(ܴା )  become Banach space with Banach space with respect to above norm and then multiplication in it 
by ܮଵ(ܴା) we denote the space of Lebesguge integrable function on ܴା with the norm ‖. ‖௅భ defined by  
 
   ‖ܺ‖௅భ = ∫ ஶ|(ݐ)ݔ|

଴  ݐ݀
 
We employ a hybrid fixed point theorem of Dhage [14] for proving the existing results, 
 
2.4Theorem [Dhage14] :Let  s  be closed convex and bounded subset of Banach space X and let ܨ: :ܩ ܵ → ܵ   be 
two operators satisfying 
a)  F is Lipschitz with Lipschitz constant K 
b) G is completely continuous. 
c) ݔܩݔܨ ∈ ݔ ݈݈ܽ ݎ݋݂ ܵ ∈ ܵ. 
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d) ܯ௞ < ܯ ݁ݎℎ݁ݓ 1 = ‖(ܵ)ܩ‖ = :‖(ݔ)ܩ‖} ݌ݑܵ ݔ ∈ ܵ} 
Then the operator equation, 

ݔܩݔܨ =  ݔ
has a solution . Aset of all solution in compacts. In case the lim. (2.3) is uniform with respect to the set 

.Ω i(ݎ଴ݔ)ܤ e. when each ∈ > 0 there exist T>0.such that|(ݐ)ݔ − |(ݐ)ݕ ,ݔ∀ ∋> ∋ ݕ (ݎ଴ݔ)ܤ ∩ Ω  ܽ݊݀  
ݐ ≥ ܶWe say that the solution is uniformly locally attractive. 
 

2.5Defination:The solution ܺ =  in equation 2.3 is said to the globally attractive if equation 2.4 holds for (ݐ)ܺ
each solution y(t) of equation 2.3. 
 
Existence Result 
We consider the following hypothesis in the sequel.  
:݂ ૚  The functionࡴ ܴା → ܴ is continuous and there exists a bounded function݈: ܴା → ܴ with bound L satisfying  

,ݐ)݂| (ݔ − ,ݐ)݂ |(ݕ ≤ ݔ|(ݐ)݈ − ݐ ݈݈ܽ ݎ݋݂|ݕ ∈ ܴାܽ݊݀ ݔ, ∋ ݕ ܴ. 
:૛ The function ଵ݂ࡴ ܴା → ܴ defined ଵ݂ = ,ݐ)݂| 0)| is bounded with      ଴݂ = }݌ݑܵ ଵ݂(ݐ): ܴା}. 
:ݍ ૜  The functionࡴ ܴା is continuous and lim௧→ஶ (ݐ)ݍ = 0. 
:݃ ૝ The functionࡴ ܴା → ܴ  is continuous moreover there exist a function m:ܴା → ܴା belong continuous on 
ܴାand function ℎ:ܴା → ܴା with h (0) = 0 such that 

,ݐ)݃| ,ݏ (ݔ − ,ݐ)݃ ,ݏ |(ݕ ≤ ݔ|)ℎ(ݐ)݉ −  (|ݕ
,ݐ ݈݈ܽ ݎ݋݂ ݏ ∈ ݏ ݐℎܽݐ ℎܿݑݏ ܴ ≤ ,ݔ ݈݈ܽ ݎ݋݂ ݀݊ܽ ݐ ∋ ݕ ܴ. 

Further suppose let’s define the function ଵ݃(ݐ) = max{|݃(ݐ, ,ݏ |(݋ ∶ 0 ≤ ݏ ≤  obviously the function ଵ݃is  {ݐ
continuous ܴା. 
૞  The function a, b:ܴାࡴ → ܴା then defined formulaܽ(ݐ) = ఈݐ(ݐ)݉ (ݐ)ܾ , =  ଵ݃(ݐ)ݐఈ are bounded on ܴା and 
vanish at infinity that is , 
tlim௧→ஶ (ݐ)ܽ = lim௧→ஶ (ݐ)ܾ = 0. 
 
3.1Remark Note that the hypothesis (ܪଷ ) ܽ݊݀ (ܪହ) holds than there exist constant ܭଵ > ଶܭ ݀݊ܽ 0 > 0 
ଵܭ  = (ݐ)ݍ}݌ݑܵ ∶ ݐ ∈ ܴା}                                                      3.1 
ଶܭ  = ݌ݑܵ ቄ௔(௧)௛(௥)ା௕(௧)

୻(୰ାଵ) ∶ ,ݐ ାቅܴ߳ݎ                                      3. 2 
 
3.2 Theorem: Assume that the hypothesis ܪଵ − ଵܭ)ܮହ holds furthermore ifܪ + (ଶܭ < 1, wehere ܭଵܽ݊݀ ܭଶare 
defined remark3.1 then 1.1 has at least one solution in the space ܥܤ(ܴା) moreover solution of (1.1) are locally 
attractive on ܴା . 
 Set ܺ = = ൫ܴା,ܴ൯ consider the closed at origin O and of the radius r where rܥܤ ௙బ(௄భା௄మ)

ଵି௅(௄భା௄మ) >  0 
Let’s define the operators ܤ ݊݋ ܩ ߙܨ௥(0) by, 
 
(ݐ)ݔܨ  = ݂൫(ݔ)ݐ൯ 
 
(ݐ)ܩ  = (ݐ)ݍ + ଵ

୻(ఈ) ∫
௚(௧,௦,௫(௦))
(௧ି௦)భషഀ

௧
଴   3.3                                          ݏ݀ 

 
 ାܴ߳ݐ ݈݈ܽ ݎ݋݂
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Since the hypothesis (ܪଵ) are holds the operator F is well defined the function FX is continuous and bounded 
view of hypothesis (ܪସ)thereforeܩߙܨ define the operator ܨ. :ܩ ௥(0)ܤ → ܺ will show that ܩߙܨ satisfy the 
requirement of 2.4 on ܤ௥(0). Let ݔ, ݕ ∈  ଵ we getܪ be arbitrary then by hypothesis (݋)௥ܤ
 

ห݂൫(ݐ)ݔ൯ − ൯ห(ݐ)ݕ൫ܨ = ,ݐ)݂‖ (ݐ)ݔ − ,ݐ)݂  ‖(ݐ)ݕ
 

≤ ݐ(ݔ)|(ݐ)| −  |ݐ(ݕ)
 

≤ ܺ‖ܮ − ܻ‖ 
 

∋ ݐ ݈݈ܽ ݎ݋݂ ܴା ݐ ݎ݁ݒ݋ ݉ݑ݉݅ݎ݁݌ݑݏ ݃݊݅݇ܽݐ. 
 
(ݔ)ܨ‖    − ‖(ݕ)ܨ ≤ ܺ‖ܮ − ܻ‖ 
 
for all ݔ, ∋ ݕ  .௥(0)ܤ
 
This shows that F is Lipschitizion ܤ௥(0) with Lipschitz constant L. 

II Now we show that G is continuous and compact operator ܤ௥(0). First we show that G is continuous on ܤ௥(0). 
Let’s fix arbitrary ∈ > 0 and take ݔ, ݔ‖  ݐℎܽݐ ℎܿݑݏ௥(0)ܤ ݕ − ‖ݕ ≤∈ then given 
 

(ݐ)(ݔ)ܩ| − |(ݐ)(ݕ)ܩ ≤
1

Γ(ߙ)
න

ห݃(ݐ, (((ݏ)ݔ)ݏ − ݃, ,ݐ) ൯)ห(ݏ)ݕ൫ݏ
ݐ) − ଵିఈ(ݏ

௧

଴
 ݏ݀

 

≤
1

Γ(ߙ)
න

(ݏ)ݔ|)ℎ(ݐ)݉ − (|(ݏ)ݕ
ݐ) − ଵିఈ(ݏ

௧

଴
 ݏ݀

≤
ఈݐ(ݐ)݉

ߙ)ܨ + 1) ℎ(ݎ) 

 

≤
(ݐ)ܽ

∝)ܨ +1) ℎ
 3.4                                    (ݎ)

 
Since h(r) is continuous on ܴା then its bounded on ܴାand there exists a nonnegative constant ℎ⊛ such 

that 
ℎ⊛ = sup{ℎ(ݎ): ݎ > (ݐ)ܽ  there exists    T >0  such that (ହܪ) In hypothesis  ݁ܿ݊݁ܪ{0 ≤ ୻(ఈାଵ)ఢ

௛⊛
 for  t > 

T thus for t >T we derive  
(ݐ)(ݔ)ܩ)| − |((ݐ)(ݕ)ܩ < ∈              3.5 
Furthermore let’s assume that ݐ ∈ [0, ܶ]  then evaluating similarly we obtain. 
 

ݐ(ݔܩ)| − |ݐ(ݕܩ) ≤
1
Γߙ

න
,ݐ)݃| (ݏ)ݔݏ − ,ݐ)݃ |(ݏ)ݕݏ

ݐ) − ଵିఈ(ݏ
௧

଴
 ݏ݀

 

≤
ܶఈ

Γ(ߙ + 1) ௥ܹ
்(݃ ߳)                             3.6 
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Where ௥ܹ

்(݃, ߳) = sup { |݃(ݐ, (ݔݏ − ,ݐ)݃ |(ݕݏ ∶ ,ݐ ,0]߳ ݏ ܶ], 
 

,ݔ ,[ݎ ݎ−]߳ݕ ݔ| − |ݕ ≤∈ 
 
∴The uniform continuity of the function ݃(ݐ, ,on the set [0 ((ݔ)ݏ ܶ] × [0, ܶ] × ,ݎ−] we derive that ௥ܹ [ݎ

்(݃, ∈) →
߳ ݏܽ 0 → 0  Hence above establish factor we conclude that the operator G ball ܤ௥(0)continuously into itself. 

Now we show that G is compact ܤ௥(0). It is enough to show every sequence{ݔܩ௡} in ܩ(ܤ௥(0))has 
Cauchy subsequence. In view of hypothesis ܪଷܽ݊݀ܪସ  we infer that, 

 

|(ݐ)௡ݔܩ| ≤ |(ݐ)ݍ| +
1

Γ(ߙ)
න

,ݐ)݃| ,ݏ |(ݏ)௡ݔ
ݐ) − ଵିఈ(ݏ

௧

଴
 ݏ݀

 

≤ |(ݐ)ݍ| +
1

Γ(ߙ)න
,ݐ)݃| ,ݏ (ݏ)௡ݔ − ,ݐ)݃ ,ݏ 0)|

ݐ) − ଵିఈ(ݏ
௧

଴
ݏ݀ +

1
Γ(ߙ)

න
,ݐ)݃| ,ݏ 0)|
ݐ) − ଵିఈ(ݏ

௧

଴
 ݏ݀

 

≤ |(ݐ)ݍ| +
1

Γ(ߙ)න
|(ݏ)௡ݔ|)ℎ(ݐ)݉

ݐ) − ଵିఈ(ݏ
௧

଴
ݏ݀ +

1
Γ(ߙ)

න ଵ݃(ݐ)
ݐ) − ଵିఈ(ݏ

3.7       ݏ݀
௧

଴
≤ |(ݐ)ݍ| +

∝ݐ(ݐ)݉

Γ(ߙ + 1) ℎ
(ݎ) + ଵ݃(ݐ)ݐఈ

Γ(ߙ + 1)
 

 

≤ |(ݐ)ݍ| +
(ݎ)ℎ(ݐ)ܽ + (ݎ)ܾ

Γ(ߙ + 1)
 

 
ଵܭ ≥ +  ଶܭ
 
for all ݐ ∈ ܴା taking the superimum over t. We obtain ݊ ∈ ܰ.This shows that{ݔ)ܩ௡} is uniformly bounded 
sequence in ܩ(ܤ௥(0)). 
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