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Abstract 

In an inhomogeneous metric which admits two spacelike commuting Killing vectors and 
has separable metric coefficients and obtained a general class of inhomogeneous solutions of 
Einstein field equations with nonthermalised perfect fluid as the source term.This idea arose 
out of the general result that under physically reasonable conditions of p ositivity of energy, 
causality, regularity etc., the initial singularity is inescapable in cosmology so long as we adhere 
to Einstein’s equations and it may only be avoided by invoking quantum effects and or 
modifying Einstein general theory of relativity.   In an inhomogeneous metric which admits two 
spacelike commuting Killing vectors and has separable metric coefficients and obtained a 
general class of inhomogeneous solutions of Einstein field equations with nonthermalised 
perfect fluid as the source term. 
 
1.INTRODUCTION 
 Since the appearance of general theory of relativity the study of the Universe as whole 
has been on outstanding scientific subject.  Until very recently, the exact solutions used for that 
study have been spatially homogeneous and isotropic distribution for its matter content being 
the FLRW (Friedman-Lemaitre-Robertson-Walker) models which admit at least a three-
parameter group of isometrics and has been quite successful in describing the present state of 
the Universe.  It is realised that the homogeneous and isotropic character of the spacetime may 
not be sustained at all scales especially for the early times.  One of the main features of 
relativistic cosmology is the prediction of big bang singularity in the finite past.  This idea arose 
out of the general result that under physically reasonable conditions of positivity of energy, 
causality, regularity etc., the initial singularity is inescapable in cosmology so long as we adhere 
to Einstein’s equations and it may only be avoided by invoki ng quantum effects and or 

modifying Einstein general theory of relativity. It also shown, from the nonvanishing 

components of the Weyl tensor that the metric will be, in general, of Petrov type I at least in 
generic points.  Very special cases could arise in which the Weyl tensor is of Petrov types D or 
O. 
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2. Key words: nonthermalised, inhomogeneous, spacelike, (Friedman-Lemaitre-Robertson-
Walker) FLRW, hypersurface, nonthermalised, hypersurface 
 
 
 
INTRODUCTION 

The general inhomogeneous metric does not have any symmetry at all, but the 
complexity of Einstein equations is so high that some simplifications must be assumed.  The simplest 
in homogeneous models are those with two spacelike commuting Killing vectors known as 
orthogonally transitive G2 cosmologies as presented by (Hewitt and Wainwright 1990), 
(Wainwright 1981), (Carmeli et al 1981).  Very few solutions of this type for perfect fluid are 
known up to now.  The first class of solutions was given by ( Wainwright and Goode 1980), and 
new metrics were later found by (Feinstein and Senovilla 1989), (Senovilla 1990) and (Davidson 
1991). (Senovilla 1990) obtained new class of exact solutions of the Einstein equations without 
big bang singularity, representing cylindrically symmetric, inhomogeneous Universe wi th 
perfect fluid which is smooth and regular everywhere satisfying energy and causality conditions. 
However, in order to study inhomogeneous epochs of the Universe, which apparently are 
necessary for the formation of large-scale structures, it is necessary to use exact 
inhomogeneous solutions to Einstein equations.  The general inhomogeneous metric does not 
have any symmetry at all, but the complexity of Einstein equations is so high that some 
simplifications must be assumed.  The simplest in homogeneous models are those with two spacelike 
commuting Killing vectors known as orthogonally transitive G 2 cosmologies as presented by 
(Hewitt and Wainwright 1990), (Wainwright 1981), (Carmeli et al 1981).  Very few solutions of 
this type for perfect fluid are known up to now.  The first class of solutions was given by 
(Wainwright and Goode 1980), and new metrics were later found by (Feinstein and Senovilla 
1989), (Senovilla 1990) and (Davidson 1991). (Senovilla 1990) obtained new class of exact 
solutions of the Einstein equations without big bang singularity, representing cylindrically 
symmetric, inhomogeneous Universe with perfect fluid which is smooth and regular everywhere 
satisfying energy and causality conditions. All the physical and geometrical invariants for i t are 
finite and regular throughout the whole spacetime. Ruiz and (Senovilla 1992) have separated 
out fairly large class of singularity free models through a comprehensive study of general 
cylindrically symmetric metric with separable functions of  r  and  t  as metric coefficients.  
(Dadhich, Tikekar and Patel 1993) have obtained a link between the FLRW models and the 
singularity free family. 

At very early times, matter in Universe is assumed to be in a highly dense and hot state. 
Subsequently, study of dissipative, effects in cosmology become very significant.  Dissipative 
effects were studied in cosmology in the context of large entropy per baryon and isotropy of 
microwave background radiation by (Misner 1968), (Caderni and Fabri (1978). Cosmological 
models with heat flux have been investigated by several authors : (Dang 1989), (Novello and 
Reboucas 1978), (Ray 1980), (Reboucas and Limma 1981), (Patel and Dadhich 1991), (Patel and 
Dadhich (1993), (Davidson 1993). 

In an inhomogeneous metric which admits two spacelike commuting Killing vectors and 
has separable metric coefficients and obtained a general class of inhomogeneous solutions of 
Einstein field equations with nonthermalised perfect fluid as the source term.  
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3. METHOD 
Metric and Basic Equations  

In the investigation of orthogonally transitive diagonal G
2
 cosmologies as presented by 

(Hewitt and Wainwright 1990), geometrically this means that the spacetime admits two 
commuting space like Killing vector fields, both of which are hypersurface orthogonal and that 
the Einstein field equations are satisfied for an energy momentum tensor of nonthermalised 
perfect fluid.  It is obvious that the metric of such spacetime may be put in the generalized 
Einstein-Rosen form. 

 

1. ds
2
 = F

0
 dt

2
– F

1
dx

2 -F
2
 (F

2 dy
2
 + F

3

-1

 dz
2
), 

 
where the positive functions 
 

2. F

 (,   =  0, 1, 2, 3), 

 

depend on the coordinates  t  and  x, the Killing vectors are /y and /z and the unit velocity 
vector of the fluid is  
 
3.   u =   F

0

½ dt. 

 

We shall consider only metrics of type (1) such that the functions F are separable i.e.  
 

4. F  =  T (t)  X (x). 
 
(Riuz and Senovilla 1992) have obtained that the metric for such spacetime assumes the form 
 

5.   2-1121222222     dzGPTdyGPTdxHdtFTds nnm    

 
where 
     T =  T (t) 
     F =  F (x) 
 
6. G = G (x) 

P =  P (x) 
H = H (x) 
 

and m  and n  are constants.  The coordinate are labelled as 
 

     x
o
 = t 

7.     x
1
 = x 

     x
2
 = y 

     x
3
 = z 
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The function H(x) will enable us to integrate the field equations in terms of elementary 
functions in some occasions.  Let us introduce the orthonormal tetrad  

 

   
o

 = T
m

 F dt 

   
1
 = T

m
 FH dx 

8.    
2
 = T

(1+n)/2

  GP  dy 

   
3
 = T

(1-n)/2

  G/P dz   
 

The  nonvanishing  components  of  the  Ricci  tensor  for  the metric (2.5) in the above 
tetrad frame assume the form 
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where does and primes denote derivatives with respect to  t  and  x,  respectively.  
The energy momentum tensor for a nonthermalizaed perfect fluid reads – 
 

14.          T = ( + p) u u  - p g + (q u + q u) 
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15.   u u  = 1 

16.     u q
  = 0 

 

where   and p  be the energy density and fluid pressure of distribution.  u denotes  

unit time like flow vector of the fluid and q stands for space like heat flow vector orthogonal to 

u . 

 The components of vector u  and q  in tetrad frame assume the form 
 

17.   u  =   (1,  0,  0, 0) 
18.   q


  = ( 0,  q, 0, 0 ) 

 
where q is function of coordinates and depends on the Einstein field equations.   
 

19.                 uuuqpguuR   8  
2
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In view of eqs. (17)  - (19) one obtains 
 

20.          R
11

  =   4   g
11

  (   -  p )  =  -  4  (   -  p )   

21.          R
22

 =   4   g
22

  (   -  p )   =  -  4  (   -  p )   

22.          R
33

 =   4   g
33

  (   -  p )   =  -  4  (   -  p )    

23.          R
00     

=    - 8 { (  +  p )  -   ½  g
00  ( - p ) } 

      =    -  8 ( /2  +  3p  )  = - 4  ( +  3p) 
              2 
 
 

24.         R
10   =  -    8  q  

 
showing that the following relations hold 
 
25.   R11 =    R

22    =   R
33

 

26.   8   =    - ½  (3R
22 + R

00
) 

27.   8p =      ½  (R
22  – R

00
) 

 
In view of eq. (24) it is obvious that R10 ≠ 0 showing that the spacetime may sustain 

presence of heat flow.  If  R10 = 0  i.e.   q = 0 one may recover the perfect fluid i.e.  

 

28.   F2 = G
1-2m 

P
n 

 
 In our case R10 ≠ 0, hence we select  

 

29.   F2 = G
2d

  P
2
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In view of equation (25), one obtains 
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The left hand side of eqs. (30) – (31) are functions of x only whereas the right hand sides 

are functions of  t  only.  Hence, both sides of respective equations m ust be equal to a 
separation constant, different for different equations.  Hence, one obtains  

32.     constant  a  1,  0,    ,    2

.  .

 a
T

T
implying that 

 

     A Cosh (at) + B sinh (at),  = 1 

33.      T(t)    =  At + B,  =0 

     A Cos (at) + B Sin (at),   = -1 
 
 
 where A and B are arbitrary constants of integration.  In view of eqs. (29) and (32), the 
eqs. (30) and (31) assume the form  
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H
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35.    
H

H
d
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2
  

 
Where 
 

36.             =  G’/G 

37.             = P’/P 
 

One may obtain the physical variables p, , q in view of equations 29 – 34  
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where 

41.  X = (1+4d)2  -  2  +  4 
 
and we have taken always that  
 
42.         2d + 1 ≠ 0  
 
In the view of eqs. (38) and (39), one may easily obtain 
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The matter distribution will satisfy an equation of state 
 

44.                  = K p 
 
if one of the following set of condition is satisfied :  
 

45.    = 0, 4m+1 = n2   

46.   2d + 2m – 1+ 2n – n2 = 0,   4m+1 = n2 , 

47.  2d + 2m – 1+ 2n – n2 = 0,   2

.
2

  a
T

T
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Where 
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48.         1
12

32







d

d
K  

  
However, corresponding to stiff fluid, the parameters may be selected appropriately so 

that the matter distribution satisfies equation of state  = p.  For  = Kp  and K as positive, d > 2 
must be taken.  Here q be the parameter which implies the presence of heat flow with matter 
and will vanish if anyone of the following conditions is satisfied:  
 

49.   2d = 1 – 2m,     = 0, 

50.    n = 2,   = 0, 

51.    = 0,   = 0, 

52.   2d = 1 – 2m, n = 2 
 
 Hence, we have investigated the heat flow generalisation of the general class of 

inhomogeneous perfect fluid solutions of (Ruiz and Senovilla 1992) when 2d ≠ 1 – 2m and n ≠ 2 

;  ≠ 0 and   ≠ 0. 
 
4. KINEMATICAL PARAMETERS 
 The kinematical properties of the velocity vector given by eq. (17) in the metric by eq. 

(5), a straightforward calculation leads to the following expression for the    expansion   , 

rotation  w, shear  , and acceleration  ai of the fluid  
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56.   ai = (0, -d, -, 0, 0) 
 

  The ratio of    to    is constant. 
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showing that there is no possibility of the models to get isotropised at some later time.  
For   n = 0 and  2m = 1,  one obtains 
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59.    = 0 
 
 Hence, we have obtained cylindrically symmetric models for non-thermalised shear-free 
perfect fluid distribution with  
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5. The nonvanishing Components of the Weyl Tensor  
 
  Performing the computation in the null tetrad 
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 It is obvious that the eqs. (64) – (66) may be further simplified by using eq. (29) and the 

main eqs. (34) and (35) so that there would not appear any derivative of the functions  and . 
 
 
6. CONCLUSION 
 We have obtained heat flow generalisation of the general class of inhomogeneous 

perfect fluid solutions of (Ruiz and Senovilla 1992) when 2d ≠ 1-2m  and  n ≠ 2 ;  ≠ 0 and  ≠ 

0.  In our model the ratio of  to  is a constant showing that there is no possibility of the 
models to get isotropised at some later time.  In this set up 2m = 1 and n = 0, we have 
investigated cylindrically symmetric models describing distribution of nonthermalised shear -
free perfect fluid.  It also shown, from the nonvanishing components of the Weyl tensor that 
the metric will be, in general, of Petrov type I at least in generic points.  Very special cases 
could arise in which the Weyl tensor is of Petrov types D or O.  
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