Volume : II, Issue : XI, December - 2012 ASTUDYOFZNO NANO-WIRE FIELD-EFFECT TRANSISTOR WITH CHEMICALSENSINGA. P . Y ADA V, ADARSHAKUMAR AND AJA YKUMAR THAKUR Published By : Laxmi Book Publication Abstract : In this paper Zinc oxide nanowire has been configured as n-channel FET s.
These transistors have been implemented as chemical sensors for detection of various
chemical gases. During the course of investigation it is observed that the nanowire
conductance is reduced when it is exposed to oxygen, nitrogen dioxide, ammonia gases
at room temperatur e. Its ammonia sensing behavior is observed to switch fr om oxidizing
to reducing when temperatur e is incr eased to 500 K. This effect is mainly attributed to the
temperatur e dependent Fermi level shift. In addition, carbon monoxide is found to
incr ease the nanowire conductance in the presence of oxygen. Furthermore, the
detection sensitivity dependence on the nanowire radius is presented. Keywords : Article : Cite This Article : A. P . Y ADA V, ADARSHAKUMAR AND AJA YKUMAR THAKUR, (2012). ASTUDYOFZNO NANO-WIRE FIELD-EFFECT TRANSISTOR WITH CHEMICALSENSING. Indian Streams Research Journal, Vol. II, Issue. XI, http://oldisrj.lbp.world/UploadedData/1798.pdf References : - S. J. T ans, A. R. M. V erschucren, and C. Dekkcr, “Room. temperature transistor based on a single carbon nanowbe,” Nature, vol. 393, pp. 49—5 2. 1998.
- X. Liu, C. Lee. C. Zhou, and J. Han. “Carbon nanotube field-effect inverters,” Appl. Phys. Lett., vol. 79, pp. 3329—3331. 2001.
- Y . Huang. X. Duan, Y . Coi. L. J. Lauhon, K-H. Kim, and C. M. Lieber, “Logic gates and computation from assemblcd nanowire building blocks,” Science, vol. 294. pp. 1313—1317, 2001.
- X. Duan, Y . Huang, Y . Cui. J. Wang. and C. M. Lieber, “indium phospbide nanowires as building blocks for nanoscale electronic and optoelectronic devices:' Nature. vol. 409, pp. 66—69, 2001.
- J. Kong. N. R. Franklin. C. Zhou, M. G. Chapline. S. Peng. K. Cho. And H. Dai. “Nanotobe molecular wires as chemical sensors:' Science, vol. 287, pp. 622—625, 2000.
- A. Kolmakov. Y . Zhang. G. Cheng. and M. Moskovits. “Detection of CO and O2 using tin oxidc nanowire sensors:' Adv. Mater,. vol. 15, pp. 997— 1000. 2003
- Q. W an, Q. H. Li. Y . J. Chen, T . H. W ang. X. L. He. J. P . Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors.” App; Phys. Lett., vol. 84, pp. 3654—3656. 2004.
- H. Geistlinger. “Electron theory of thin—film gas sensors:' Sens. Actuators B, vol. 17, pp. 47—60, 1993.
- P-C. Cbang. Z. Fan. D. Wang. W..T . T seng. W.-A. Chiou, J. Hong, and J. G. Lu, “ZnO nanowires synthesized by vapor trapping CVD method:' Chew. Mater., vol. 16. pp. 5133—5137. 2004.
- Z. Fan. D. W ang, P-C. Chang. W .-T . T seng, and J. G. Lu. “ZnO nanowire field-effect transistor and oxygen sensing property Appl Plies. Lett., vol. 85. pp. 5 923—5925, 2004.
- Z. Fan and J. G. Lu, “Gate refrcshable nanowire chemical sensors:' Appl Phys. Lett., vol. 86. p. 123510. 2005.
- D. Zhang, C. Li, X. Liu, S. Han, T. T ang, and C. Zhou, “Doping dependent NH3 sensing of indium oxide nanowires,” Appi. Phys. Lett., vol. 83. pp. 1845—1 847. 2003.
- O. Lang. C. Pettenkofer. J. F . Shnchez-Royo. A. Segura. A. Klein, and W. Jaegermann. “Thin film growth and band lineup of 1n3O3 on the layered semiconductor InSe” J. Appl. Phys. vol. 86, pp. 5687—5691. 1999.
- V . E. Henrich and P . A. Cox, The Surface Science of Metal Osides Cambridge. U.K.: Cambridge Univ. Press, 1994.
- J. Northrup, R. Di Felice, and J. Neugebauer. “Energetics of H and NH4 on GaN and implications for the origin of nanopipe defects” Phys. Rev. B. vol. 56, p. R4325, 1997.
|
Article Post Production
Article Indexed In
|